

Hydrogeological Investigation and Construction Dewatering Assessment

1543, 1545, 1547, 1549, 1551 The Queensway & 66 And 76 Fordhouse Boulevard Etobicoke, Ontario

Project 10266-REV 1

1.	INTRO	DDUCTION	1
	1.1	Concurrent Studies	1
	1.2 1.2.1	Scope of Work Field Tasks	2 2
2.	STUD	Y AREA PHYSIOGRAPHY AND HYDROGEOLOGY	2
	2.1	Site Description	2
	2.2	Physiography and Soil Stratigraphy	3
	2.3	Hydrogeology and Groundwater	4
	2.4	Surface Water Features	4
	2.5 2.5.1	Soil Hydraulic Conductivity Slug Test Results	5 5
	2.5.2	Grain Size Analysis Results	6
	2.6 2.6.1	Groundwater Chemistry Storm Sewer Criteria	6 7
	2.6.2	Sanitary Sewer Criteria	7
3.	WATE	RUSERS	8
	3.1	Municipal Wellhead Protection Areas	8
	3.2	Sensitive Features, and Sensitivity to Contamination	8
4.	PREL	IMINARY CONSTRUCTION DEWATERING ASSESSMENT	9
	4.1 4.1.1	Preliminary Excavation Requirements and Temporary Construction Dewatering Assumptions Concurrent Excavations	10 11
	4.1.2	Dewatering Assumptions	11
	4.2 4.2.1	Dewatering Calculations Calculated Dewatering Rates, With Factors of Safety	11 12
5.	PERM	IT REQUIREMENTS AND DEWATERING DISCHARGE	14
	5.1 5.1.1	Dewatering Discharge City of Toronto Storm Sewer Use By-Law	14 14
	5.1.2	Discharge to Municipal Storm Sewers	15
	5.1.3	City of Toronto Sanitary Sewer Use By-Law	15
	5.1.4	Discharge to Municipal Sanitary Sewers	15
6.	POTE	NTIAL IMPACTS OF CONSTRUCTION DEWATERING	16
	6.1	Municipal Supply Wells and Surface Water Intakes	16
	6.2	Private Supply Wells	16
	6.3	Surface Water Features	16

	6.4 6.4.1	Groundwater Resources Confined Groundwater Conditions and Excavation Bottom Heave	16 17
	6.5	Geotechnical Issues and Settlement	17
7.	ΜΟΝΙΤ	ORING AND MITIGATION	17
	7.1	Discharge Volumes	17
	7.2 7.2.1	Discharge Water Chemistry Discharge to Municipal Storm or Sanitary Sewers	18 18
	7.3	Discharge Locations	19
	7.4	Excavation Bottom Heave	19
	7.5	Geotechnical Issues for Adjacent Infrastructure	20
	7.6	Water Supply Wells	20
8.	CLOSI	JRE	20
9.	LIMITA	TIONS AND USE	22
10.	REFE	RENCES	23

APPENDIX A: DRAWINGS APPENDIX B: TABLES APPENDIX C: BOREHOLE LOGS

APPENDIX D: SLUG TEST ANALYSIS GRAPHS

APPENDIX E: SOIL GRAIN SIZE ANALYSIS GRAPHS

APPENDIX F: LABORATORY CERTIFICATES OF ANALYSIS

APPENDIX G: MECP WATER WELL RECORDS

1. INTRODUCTION

Hydrogeology Consulting Services Inc. (HCS) was retained by 1370443 Ontario Limited to conduct a hydrogeological investigation for a proposed redevelopment at 1543, 1545, 1547, 1549, 1551 The Queensway & 66 and 76 Fordhouse Boulevard, Etobicoke, Ontario. The location of the subject property is shown on Drawing 1 in Appendix A.

The subject property is currently owned by 1370443 Ontario Limited. The property is municipally serviced for water and sewers. The property zoning is listed at CR 2.5, SS2 on the City of Toronto's Interactive Zoning Map for commercial-residential use.

The site is currently developed with five one-and-two-storey commercial buildings. The proposed development includes four residential mixed-use buildings (30-45 storeys), all with two levels of underground parking.

This assessment has been prepared to respond to requirements from the City of Toronto Terms of Reference for Hydrological reports, and in accordance with legislation including the Ontario Water Resources Act, Ontario Regulation 387/04 (as amended), and Toronto Municipal Code Chapter 681.

Revision 1 of this report contemplates changes to the project design (including a reduction in the number of underground parking levels from three to two). This report supersedes and replaces previous versions.

1.1 Concurrent Studies

It is understood that Sola Engineering Inc. (SOLA) will be conducting a geotechnical investigation concurrently with the hydrogeological investigation conducted by HCS Inc.

The Geotechnical investigation (2023) includes the advancement of twelve boreholes on the property completed as 50 mm diameter monitoring wells. The geotechnical report should be referred to for details including drilling and well construction, soil stratigraphy, and soil sample analysis results.

The locations of the boreholes/monitoring wells on the property are shown on the appended Drawing 2

1.2 Scope of Work

Field investigation for this hydrogeological investigation comprised a site visit to assess the property and the proposed site plan layout. Twelve boreholes were advanced on the property by SOLA Engineering Inc. with six boreholes completed as 50 mm diameter monitoring wells to investigate the presence of shallow groundwater. A soil sample was obtained from BH1 for the purpose of particle size distribution (grain size) analysis, and monitoring wells were assessed via slug tests to estimate saturated soil hydraulic conductivity.

1.2.1 Field Tasks

Five monitoring wells (BH1, BH3, BH4A, BH5 and BH6) were developed (purged) using Waterra inertial valves and tubing on September 15, 2023 to remove fine-grained material from the well screen sand pack and mitigate smearing on the borehole walls during drilling in preparation of well testing. Water chemistry samples were obtained from two wells for analysis of City of Toronto Storm and Sanitary Sewer Use By-Law parameters, and five wells (BH1, BH3, BH4A, BH5 and BH6) were assessed via slug tests to estimate saturated soil hydraulic conductivity. Due to a malfunction in the datalogger, slug test data from BH6 will not be included in the report.

Stabilized groundwater elevations were measured using an electronic water level tape on September 20, 2023, and five monitoring wells were instrumented with electronic pressure transducers (dataloggers) to allow continuous measurement of groundwater levels for a period of three months. Water level measurements are summarized in Table 1 in Appendix B.

2. STUDY AREA PHYSIOGRAPHY AND HYDROGEOLOGY

2.1 Site Description

The subject property is a 2.1-hectare commercial/residential property located within the City of Toronto (Etobicoke). As shown on the appended Drawing 1, the property is located adjacent to the Gardiner Expressway, bounded by The Queensway in the north and Fordhouse Boulevard in the south. The site is bordered by commercial properties to the east and west, with commercial/residential properties further along in all directions.

The site is currently developed for commercial/residential/industrial purposes and is occupied by one and two storey buildings dispersed throughout the area. The remainder of the Site is covered by an asphalt parking lot as well as small lawn areas.

The ground surface topography of the subject property indicates a gentle southward slope with a change of elevation from approximately 101.8 meters in the north to 100 meters near the southern property boundary. Elevations (in meters) are in reference to a local datum.

2.2 Physiography and Soil Stratigraphy

The property lies within the Iroquois Plain physiographic region (Chapman and Putnam, 2007) which is mainly comprised of silt and clay till that is partly floored with sand deposits that formed when Pleistocene Lake Iroquois emptied, and includes its old shorelines and lake bottom. The subject property is located within the Sand Plains physiographic unit (Chapman and Putnam, 2007) which consists of both bedload and suspended load sediment deposits from glaciolacustrine environments.

Surficial Geology mapping of Southern Ontario (Ontario Geological Survey, 2003) indicates the property is underlain by coarse-textured glaciolacustrine deposits of sand, gravel, and minor silt and clay from foreshore and basinal deposits.

Overburden soil stratigraphy observed in the boreholes advanced on the subject property mainly consists of fill of varying composition underlain by deposits of clayey silt/silt till (in BH1 and BH3) of varying thickness, with a thicker layer of silt till encountered in most boreholes at depths of approximately 1.3-2.2 mBGS. Weathered shale was encountered below the overburden layers in boreholes BH1-8. The boreholes from the current investigation extend to depths between 2 to 13.4 m below existing ground surface. The borehole logs are included in Appendix C for reference, and the appended Drawing 2 shows the locations of the boreholes on the subject property.

Paleozoic Geology mapping (Ontario Geological Survey, 1991) indicates underlying the overburden deposits is the Georgian Bay Formation shale, limestone, dolostone, and siltstone bedrock. While no deep water well records are found in proximity to the subject property, the onsite boreholes show overburden deposits are approximately 3-5 m thick.

Table I below provides a summary of the typical subsurface stratigraphy beneath the property based on borehole data provided by SOLA Engineering.

Soil Type	Depth From (mBGS)	Depth To (mBGS)	
Asphaltic Concrete	0	0.1	
Granular Base	0.1	0.5 to 0.8	
Fill	0.5 to 0.8	1.5 to 2.3	
Silt Till	1.5 to 2.3	2.0 to 4.6	
Weathered Shale	2.3 to 4.6	unknown	

Table I:	Typical Subsurface	Stratigraphy
----------	--------------------	--------------

2.3 Hydrogeology and Groundwater

Groundwater was encountered in the shale bedrock deposits, at depths ranging from 2.65 to 7.28 mBGS on September 20, 2023. The measured groundwater levels correspond to elevations of 94.55 – 97.88 meters (in relation to a local datum provided by Keystone Environmental 2023).

Long-term monitoring of groundwater levels was initiated on September 20, 2023 using electronic pressure transducers (dataloggers) installed in five on-site monitoring wells and set to record data at one-hour intervals. A supplementary groundwater level measurements table and groundwater hydrographs will be issued once the three-month monitoring period has been completed.

Groundwater encountered in the shale bedrock interface is considered to represent confined aquifer conditions. Shallow groundwater encountered while advancing the boreholes through overburden may represent perched water trapped within the generally fine-grained material overlying the weathered shale.

Locally, bedrock groundwater would be expected to flow generally southwards towards Lake Ontario; however, the extensive subsurface infrastructure and services beneath and adjacent to the subject property would be expected to cause localized influences in the movement of shallow groundwater. Regional groundwater flow beyond the subject property would be expected to flow generally towards southwards towards Lake Ontario.

Percolation of precipitation into the shallow subsurface is governed by near-surface soil types, in addition to factors such as topography, evapotranspiration, and the degree of soil saturation. Where asphalt and structures exist precipitation would be expected to run off into storm sewers. On grassed areas, small volumes of precipitation infiltrating into the near-surface fill and native low-permeability deposits would be expected to become perched on top of and within low permeability deposits of silty and clayey tills. Over time small volumes of perched water could gradually percolate vertically downwards and/or flow laterally following ground surface topography.

2.4 Surface Water Features

There are no surface water features on or adjacent to the property. The closest natural surface water feature is Little Etobicoke Creek located approximately 2.1 km west of the property.

TRCA mapping (2022) shows the property is not located within a regulated area. The closest regulated areas are approximately 2 km west of the property, associated with Etobicoke Creek. The property lies within the West Lake Ontario Shoreline watershed.

2.5 Soil Hydraulic Conductivity

Hydraulic conductivity estimates for the site soils were determined using single response hydraulic (slug) tests of the soil deposits screened by selected monitoring wells. Estimates of hydraulic conductivity were also made using soil sample grain size analyses and the Kaubisch, Breyer, Kozeny-Carman, and Hazen formulae where appropriate.

2.5.1 Slug Test Results

Prior to conducting slug testing of the monitoring wells, each well was developed (purged) to remove fine-grained material from the sand pack around the well screen and the screened interval.

The slug test methodology followed the procedures developed by Hvorslev (1951), as described in Freeze and Cherry (1979). The slug tests were conducted as falling head tests by introducing a volume (slug) of potable water into the well to cause a temporary rise in the water table; or, as rising head tests by purging a well dry and allowing water to flow naturally back into the well. The displacement and gradual re-equilibration of the water level in the wells was recorded using electronic pressure transducers (dataloggers). Hvorslev's method is expressed by the following equation:

where:

K =	<u>r² In (L/R)</u>	
	2LT _{0.37}	

Κ	= hydraulic conductivity of the tested material (m/sec)
r	= inner radius of the well riser pipe (m)

R = outer radius of the well riser pipe (m)

L =length of screen and sand pack (m)

 $T_{0.37}$ = time lag (sec), where (H-h)/(H-H₀) = 0.37

- h = water level at each time of measurement (m)
- H_0 = initial water level (m, start of test)
- H = stabilized water level prior to slug testing (m)

The time lag, $T_{0.37}$, represents the time required for the water level to recover to the stabilized level if the initial flow rate from the surrounding aquifer into the well is maintained. This time lag is determined graphically as the time where (H-h) divided by (H-H₀) is equal to 0.37.

Graphical analyses of the slug tests are included in Appendix D, and the hydraulic conductivity estimates are listed in the appended Table 2. The hydraulic conductivity ranges of 5.9×10^{-6} to 2.3×10^{-6} m/sec for the silt till (containing shale fragments) and shale deposits in BH1, BH3, and BH4A indicates a relatively moderately low permeability. BH5 did not reach T_{0.37} and had an estimated soil hydraulic conductivity of $<1.0 \times 10^{-7}$ m/sec indicating a low permeability for the shale deposit screened by the monitoring well. Due to a malfunction in the datalogger, slug test data from BH6 will not be included in the report.

2.5.2 Grain Size Analysis Results

A sample of subsurface soil collected from BH1 was submitted to the SOLA Engineering Inc. laboratory in Concord, Ontario for analysis of particle size distribution (grain size). The grain size analysis result (included in Appendix E) was used to estimate soil hydraulic conductivity (K) value by applying the Kaubisch, Breyer, Hazen, and Kozeny-Carman formulae where appropriate based on the limitations of each formula. The hydraulic conductivity estimate is summarized in the appended Table 2.

The hydraulic conductivity value for the clayey silt till encountered in the borehole was 6 x 10⁻¹⁰ m/sec, indicating a very low permeability soil. It is noted the hydraulic conductivity value from the slug test result for BH1 is several orders of magnitude higher than the grain size analysis. The higher hydraulic conductivity values found via slug tests is most likely associated with the thick layer of weathered shale found in BH1.

The hydraulic conductivity estimates from both slug test and grain size analyses generally correlate reasonably well with published ranges for major soil types (Freeze and Cherry, 1979).

2.6 Groundwater Chemistry

On September 20, 2023 water chemistry samples were obtained from monitoring wells BH5 and BH6. Samples were collected in the appropriate laboratory supplied containers, stored in a cooler, and delivered to ALS Environmental Laboratories in Waterloo, Ontario for analysis of City of Toronto Storm and Sanitary Sewer Use By-Law parameters. The laboratory Certificates of Analysis are included in Appendix F for reference, and the appended Table 3 summarizes parameters of interest.

It is important to consider the water chemistry samples were obtained using inertial valve pumps (Waterra tubing and foot valve). The method of water collection inherently results in the inclusion of sediments into the water sample, thereby increasing concentrations of parameters such as colour, turbidity, total suspended solids, total dissolved solids, and total metals where metals are adsorbed onto soil particles. Water chemistry samples were not filtered during or after collection.

Additionally, it is important to consider that the 4AAP laboratory analysis for Phenols detects a wide variety of naturally occurring organic substances, along with the chemical Phenol (C_6H_5OH). Measured exceedances of "Phenols" may not be indicative of a contamination issue, but rather groundwater that is influenced by natural environmental factors.

2.6.1 Storm Sewer Criteria

One or both groundwater samples exhibited exceedances of the Storm Sewer Use By-Law criteria limits for Total Suspended Solids (TSS), Phosphorus; Total Metals including Manganese, Arsenic, Chromium, Copper, Manganese, Nickel and Zinc; Dissolved metals including Phosphorus; Volatile Organic Compounds (VOCs) including Benzene; Total Polycyclic Aromatic Hydrocarbons (PAHs); and Total Polychlorinated Biphenyls (PCBs).

As noted above it is important to consider the sampling methodology results in high Total Suspended Sediments concentrations, and the requirement to analyze for Total Metals results in metals adsorbed on to sediment particles causing high total metals concentrations. It is reasonable to expect that mechanical filtration of dewatering discharge would result in much lower TSS and total metals concentrations.

It is important to note that if any dewatering is required and discharge is not collected using a hydrovac truck for off-site treatment and disposal, discharge to municipal storm sewers would require discharge chemistry testing to ensure all Storm Sewer Use By-Law criteria are met, and a Sewer Discharge Permit from the City of Toronto. Treatment of discharge to resolve exceedances of TSS, various metals, PAHs, and PCBs would likely be necessary.

2.6.2 Sanitary Sewer Criteria

One or both groundwater samples exhibited exceedances of the Sanitary Sewer Use By-Law criteria limits for Total Suspended Solids (TSS); Total Phosphorus; Total metals including Aluminum and Manganese.

As discussed previously in Section 2.6.1 it is reasonable to expect that mechanical filtration of dewatering discharge would result in much lower TSS and total metals concentrations.

It is important to note that if any dewatering is required and discharge is not collected using a hydrovac truck for off-site treatment and disposal, discharge to municipal sanitary sewers would require discharge chemistry testing to ensure all Sanitary Sewer Use By-Law criteria are met, and a Sewer Discharge Permit from the City of Toronto. Treatment of discharge to resolve exceedances of Total Suspended Solids and Total Metals would likely be necessary.

An evaluation of costs to treat and discharge to the Storm Sewer vs. Sanitary Sewer, and to municipal sewers vs. collecting and hauling for offsite disposal, should be considered by the client prior to selecting their preferred discharge option.

3. WATER USERS

Well Records from the Ministry of the Environment, Conservation, and Parks (MECP) Water Well Record (WWR) Database were reviewed to determine the number of supply wells present. As shown on the well records in Appendix G, twenty-five (25) wells are located within an approximate radius of 250 m from the subject property according to the MECP WWR Database.

Of these wells, eleven are identified as test holes or monitoring wells, five have a diameter of 50 mm or less and are assumed to be monitoring wells, five are identified as partial data entry only and four are identified as abandoned. These records have been excluded from further consideration.

Based on the information in the MECP WWR database there are no private water supply wells within 250 m of the subject property.

3.1 Municipal Wellhead Protection Areas

Ontario Source Protection Information Atlas mapping shows the property is not located within a Wellhead Protection Area (WHPA) or surface water Intake Protection Zone (IPZ). The closest WHPA is more than 28 km away from the subject property however there is an IPZ-2 located adjacent to the southern property boundary.

3.2 Sensitive Features, and Sensitivity to Contamination

Ontario Source Protection Information Atlas (OSPIA) mapping indicates the southern portion of the property is located within a Highly Vulnerable Aquifer (HVA) area. The property is not located within a Significant Groundwater Recharge Area (SGRA), not located within a vulnerable groundwater area, not located within a Groundwater Under Direct Influence (GUDI) of surface water area, and not located within a vulnerable surface water area.

Since all pavement stormwater runoff is directed to municipal storm sewers, it is reasonable to conclude potential surface contaminants that might be accidentally released at the site would have a lower likelihood of migrating vertically downwards to the bedrock aquifer, or laterally to off-site surface water features.

Natural Heritage Area maps from the Ministry of Natural Resources and Forestry (MNRF, 2020) shows the property is not located within a greenbelt area, not located within the Oak Ridges Moraine, and no Area of Natural and Scientific Interest (ANSI) is located within the subject property or surrounding area. TRCA mapping also shows the property is not located within a regulated area.

The location of the subject property in an urbanized residential/commercial/industrial area increases the potential risk of subsurface soil and groundwater contamination by potential contaminant release from nearby properties. Groundwater chemistry testing measured exceedances of several parameters; however, the origin of these contaminants (i.e. on site current or historical events, or off site events) cannot be determined. As the majority of the site will be covered with buildings and a small area of asphalt pavement, and subsurface soils have a moderately low permeability, infiltration of precipitation carrying any potential surficial contaminants would generally be minimal and not considered a significant impact to any perched groundwater found on site.

4. CONSTRUCTION DEWATERING ASSESSMENT

Based on excavation locations, dimensions, and depths provided for this report, construction of the 2-level underground parking structure for the study area shown on the attached Master Plan (Hariri Pontarini Architects, September 2024) will require construction dewatering to lower the groundwater table within the excavation to maintain a dry excavation base and sidewalls. It is anticipated dewatering will occur primarily in the weathered shale bedrock beneath the planned construction excavation to dewater both overburden soils and bedrock and prevent excavation bottom heave.

Temporary dewatering requirements are dependent on factors such as excavation parameters (excavation dimensions, infrastructure invert elevations, the number of concurrent excavations, etc.), hydrogeological conditions at the site (groundwater levels, soil/bedrock hydrogeological parameters, etc.), construction and dewatering methodologies (open cuts, dewatering pits, sumps, wellpoints, etc.), and the amount of groundwater drawdown required to achieve and maintain dry working conditions and stable excavations.

Additionally, factors such as the use of shoring would be expected to influence the rate of groundwater inflow into the excavation. The calculations provided below assume an open excavation as a conservative factor of safety.

It is important to note that the dewatering contractor retained to perform construction dewatering is solely responsible for achieving and maintaining dry working conditions at the site at all times. The calculations and dewatering rates/volumes provided below are not directives for a dewatering contractor, and the dewatering contractor must review the information, calculations, and recommendations provided as part of their own assessment of dewatering requirements to determine appropriate methodologies and designs for their construction dewatering project.

4.1 Excavation Requirements and Temporary Construction Dewatering Assumptions

During the construction project dewatering operations are expected to take place twenty-four hours per day to maintain a dry excavation. Dewatering calculations include a number of variables such as the static groundwater level, soil hydraulic conductivity, aquifer thickness, confined/unconfined aquifer conditions, etc. that can be adjusted to provide conservative buffers to account for conditions beyond those encountered in the available monitoring wells.

Table II below summarizes the preliminary excavation requirements for the proposed underground parking structure.

Additionally, Table II includes the following buffers as factors of safety:

- A buffer of 2 m (assumed, although the exact buffer shall be determined during the construction design phases with the shoring engineer, and accounting for property limits) for all excavation widths and lengths to account for an excavation large enough to accommodate working around the perimeter;
- A buffer of 1 m for the excavation invert elevation to ensure groundwater is drawn down 1 m below the base of the excavation to maintain a dry work surface. The excavation invert is taken as approximately 91 mASL or 8 mBGS, which is understood to be the lowest Underside of Footing (USF) elevation across the building footprint.
- A "squared off" excavation shape to account for excavation dimension adjustments during the construction process;
- A buffer of approximately 1.65 m for the groundwater elevation (2.65 mBGS measured at BH4A, increased to 1.0 mBGS) in the area of the underground parking excavation to account for seasonal fluctuations.

Table II: Excavation Requirements

	Excavation	Excavation	Excavation Depth	GW Elevation
Excavation	Length (m)	Width (m)	(mBGS)	(mBGS)
	(+2 m)	(+2 m)	(-1 m)	(+1.65 m)
2-Level Underground Parking	242	77	9 mBGS	1.0 mBGS

It is very important to consider that all construction dewatering calculations provided in this report are based on the excavation requirements and dimensions provided by Keystone Environmental (November, 2024). In the event the excavation requirements and/or dimensions change during the process of planning and design, revision of the construction dewatering calculations provided will be required.

4.1.1 Concurrent Excavations

It is understood the following concurrent tasks should be contemplated for construction dewatering:

• Concurrent excavation of the full footprint for the underground parking structure.

It is very important to consider that if modifications to the concurrent construction tasks are desired, the calculated dewatering requirements would need to be reassessed.

4.1.2 Dewatering Assumptions

Dewatering calculations have been prepared for the concurrent tasks noted above based on the following assumptions to account for variability in soil, bedrock, and groundwater conditions:

- Aquifer hydraulic conductivity of 5.6 x 10⁻⁶ m/sec (the highest hydraulic conductivity value based on the slug tests of the weathered bedrock aquifer deposits and the grain size analysis graphs);
- An estimated confined aquifer thickness (B) of 15 m.
- An initial groundwater elevation in the area of the underground parking excavation corresponding to the highest measured groundwater level from the on-site monitoring wells (2.65 mBGS) increased to 1.0 mBGS to account for seasonal variation.

4.2 Dewatering Calculations

To estimate the steady-state dewatering flow rate needed to maintain dry conditions in the excavation for the underground parking structure, the following equation (for radial flow to a confined aquifer) from Powers (2007)¹ was used:

$$Q = \frac{2\pi KB(H - h_w)}{\ln\left(\frac{R_o}{r_e}\right)}$$

¹ Powers, P.J. et al. 2007. Construction Dewatering and Groundwater Control: New Methods and Applications. Wiley.

Where:

$$\begin{split} & \mathsf{Q} = \mathsf{Flow} \; \mathsf{Rate} \; (\mathsf{m}^3/\mathsf{sec}) \\ & \mathsf{H} = \mathsf{Initial} \; \mathsf{Saturated} \; \mathsf{Thickness} \; (\mathsf{Piezometric} \; \mathsf{Head}) \; \mathsf{of} \; \mathsf{Aquifer} \; (\mathsf{m}) \\ & \mathsf{h}_\mathsf{w} = \mathsf{Dewatered} \; \mathsf{Saturated} \; \mathsf{Thickness} \; (\mathsf{Piezometric} \; \mathsf{Head}) \; \mathsf{of} \; \mathsf{Aquifer} \; (\mathsf{m}) \\ & \mathsf{K} = \mathsf{Soil} \; \mathsf{Hydraulic} \; \mathsf{Conductivity} \; (\mathsf{m}/\mathsf{sec}) \\ & \mathsf{B} = \mathsf{Thickness} \; \mathsf{of} \; \mathsf{Confined} \; \mathsf{Aquifer} \; (\mathsf{m}) \\ & \mathsf{r}_\mathsf{e} = \mathsf{Effective} \; \mathsf{radius}, \; \mathsf{r}_\mathsf{e} = \sqrt{(\mathit{excavation} \; \mathit{area}/\pi)} \; \; (\mathsf{m}) \\ & \mathsf{R}_\mathsf{o} = 3000^* (\mathsf{H}{\text{-}}\mathsf{h}_\mathsf{w})^* \sqrt{\mathsf{K}} \; (\mathsf{m}) \end{split}$$

Where R_o is very close to r_e or less than r_e , to avoid $\ln\left(\frac{R_o}{r_e}\right)$ resulting in a very small or negative number R_o is replaced with ($R_o + r_e$) in the formula above, which gives a reasonable estimate of the dewatering requirements.

Using the assumptions listed in Section 4.1 and its subsections, the steady-state inflow rate and radius of influence listed in Table III below were estimated.

Excavation	Steady State Dewatering Rate (L/day)	Radius of Influence (m)
2-Level Underground Parking	660,400	56.8

Table III: Steady-State Dewatering Requirements

4.2.1 Calculated Dewatering Rates, With Factors of Safety

It is important to consider that dewatering requirements will be highest at the start of the dewatering process when the volume of water stored within the pore spaces of the soil and within the bedrock fracture matrix must be extracted. This storage must be accounted for to allow for rapid achievement of drawdown targets.

Initial drawdown of the overburden soils and shallow bedrock aquifer within a short period of time would be expected to require additional pumping capacity. An initial drawdown requirement has been calculated assuming a surcharge of 100% of the estimated steady state dewatering rate.

It is important to consider that during and after precipitation events significantly higher dewatering flow rates may be required to account for direct precipitation and surficial runoff falling into an excavation. Table IV below includes pump-out of a 50 mm storm event within 24-hours as a conservative factor of safety.

Table IV below provides a summary of the calculated dewatering rates and factors of safety for the underground parking excavation.

	Steady State Dewatering (L/day)	Initial Drawdown Surcharge (L/day)	Precipitation Event (L/day)	Potential Maximum Total Dewatering Requirement (L/day)
2-Level Underground Parking	660,400	660,400	931,700	2,252,500

Table IV – Calculated Potential Maximum Total Dewatering Rate including Factors of Safety

The totals shown in Table IV indicate a potential maximum dewatering requirement of up to 1,320,800 L/day for the underground parking structure, plus up to 931,700 L/day to manage a significant precipitation event, for a potential total maximum pumping requirement of up to 2,252,500 L/day.

A Category 3, Permit to Take Water (PTTW) would be required to authorize pumping at this rate. Additionally, a Sewer Discharge Permit from the City of Toronto would be required to discharge to municipal sewers.

While the conservative assumptions and factors of safety discussed in the preceding sections combine to create very conservative dewatering calculations, it is important to consider the variable nature of the overburden aquifer as well as the significant areal and vertical extents of the proposed excavation.

The potential maximum dewatering requirements outlined above are reasonable based on the information available; however, a less-conservative assumption of total dewatering requirements (e.g. a allowing a longer initial drawdown time for the excavation, using a slightly less conservative hydraulic conductivity value, etc.) could reduce the estimated total dewatering requirement. The client, the construction contractor, and the dewatering contractor shall review the dewatering calculations provided above and make their own determinations regarding the potential maximum daily dewatering requirements for the project.

5. PERMIT REQUIREMENTS AND DEWATERING DISCHARGE

Ontario Regulation 387/04 requires authorization from the Ministry of the Environment, Conservation, and Parks (MECP) for all water takings over 50,000 L/day. Ontario Regulation 63/16 specifies that for temporary construction dewatering at rates between 50,000 and 400,000 L/day an Environmental Activity and Sector Registry (EASR) may be obtained in lieu of a Permit to Take Water (PTTW). Dewatering at rates of more than 400,000 L/day require a PTTW to authorize groundwater withdrawal.

As shown in Section 4.2.1, construction dewatering will require maximum daily dewatering rates above 400,000 L/day; therefore, a Category 3 PTTW would be required for the proposed temporary construction dewatering.

Temporary discharge to a municipal sewer would require a Sewer Discharge Permit/Agreement from the City of Toronto.

5.1 Dewatering Discharge

It is expected that dewatering discharge will be routed to the municipal storm or sanitary sewer.

As discussed in Section 2.6 and its subsections groundwater chemistry samples exhibited measured exceedances of the City of Toronto Storm Sewer Use By-Law criteria limits for TSS, Phosphorus; multiple total metals; a dissolved metal including Phosphorus; VOCs including Benzene; PAHs and PCBs.

Groundwater chemistry samples also measured exceedances of the City of Toronto Sanitary Sewer By-Law criteria for TSS; total Phosphorus and multiple total metals.

5.1.1 City of Toronto Storm Sewer Use By-Law

Groundwater chemistry samples exhibited exceedances of the following City of Toronto Storm Sewer Use By-Law criteria limits:

- Total Suspended Solids
- Anions and Nutrients: Phosphorus
- Dissolved metals: Phosphorus
- Benzene
- Total PAHs
- Total PCBs
- multiple Total Metals

Section 7.2.2 discusses mitigation measures that will need to be implemented to permit discharging to municipal sewers if desired.

5.1.2 Discharge to Municipal Storm Sewers

Based on the analysis results, discharge to municipal storm sewers would require treatment such as settling tanks with flocculation and/or mechanical filtration (using filter bags) to reduce TSS and total metals concentrations to acceptable levels, plus additional treatment systems to address measured exceedances of VOC, PAHs, and PCBs. During construction dewatering operations, regular sampling and analysis of discharge would be required to confirm continued compliance with the Storm Sewer Use By-Law. In the event parameter exceedances were measured, treatment of discharge would need to be adjusted/modified/supplemented to achieve Storm Sewer Use By-Law criteria limits.

5.1.3 City of Toronto Sanitary Sewer Use By-Law

Groundwater chemistry samples exhibited exceedances of the following City of Toronto Sanitary Sewer Use By-Law criteria limits:

- Total Suspended Solids
- Anions and Nutrients: Phosphorus
- Total Aluminum

Section 7.2.2 discusses mitigation measures that will need to be implemented to permit discharging to municipal sewers if desired.

5.1.4 Discharge to Municipal Sanitary Sewers

Based on the analysis results, discharge to municipal sanitary sewers would require treatment such as settling tanks with flocculation and/or mechanical filtration (using filter bags) to reduce TSS concentrations to acceptable levels. During construction dewatering operations, regular sampling and analysis of discharge would be required to confirm continued compliance with the Sanitary Sewer Use By-Law. In the event parameter exceedances were measured, treatment of discharge would need to be adjusted/modified/supplemented to achieve Sanitary Sewer Use By-Law criteria limits.

6. POTENTIAL IMPACTS OF CONSTRUCTION DEWATERING

6.1 Municipal Supply Wells and Surface Water Intakes

Ontario Source Protection Information Atlas mapping shows the subject property does not lie within a municipal wellhead protection area (WHPA). The property also does not lie within a municipal surface water Intake Protection Zone (IPZ). As the municipal intake draws water from Lake Ontario, and construction dewatering discharge that might be routed to the municipal sewers must meet all Sewer Use By-Law criteria limits, no impacts to municipal water supplies would be anticipated due to construction dewatering at the subject property.

6.2 Private Supply Wells

Review of the MECP Water Well Record online database identified zero private water supply wells within 250 m of the subject property. As the conservatively calculated radius of influence of construction dewatering is 78.1 m, no negative impacts would be anticipated for any private water supply wells which may exist.

6.3 Surface Water Features

There are no surface water features on or adjacent to the property. The closest natural surface water feature is Little Etobicoke Creek located approximately 2.1 km west of the property.

TRCA mapping (2022) shows the property is not located within a regulated area. The closest regulated areas are approximately 2 km west of the property, associated with Etobicoke Creek. The property lies within the West Lake Ontario Shoreline watershed. As the calculated radius of influence of construction dewatering is 78.1 m, no negative impacts to surface water features are anticipated.

6.4 Groundwater Resources

As construction dewatering will temporarily withdraw water from the shallow overburden and shallow bedrock which is not being utilized by private water supply wells within the estimated radius of influence of construction dewatering, no material impacts to shallow groundwater resources are anticipated. Ontario Source Protection Information Atlas mapping shows the southern portion of the subject property is located within a highly vulnerable aquifer area; however, this relates to vulnerability to impacts from contaminants rather than extraction of groundwater. As a result, no impacts to an aquifer beneath the subject property are anticipated.

6.4.1 Confined Groundwater Conditions and Excavation Bottom Heave

While significant confined aquifer conditions were not observed during drilling or in the monitoring wells installed on the subject property, seasonal groundwater fluctuations may result in more significant confined conditions. Bottom heave occurring in excavations due to unweighting of the soil/bedrock as a result of excavations removing soil/bedrock weight overlying pressurized aquifer conditions should be considered a possibility as a conservative factor of safety. As discussed in Section 7.4 below, diligent observation of conditions in the excavations is recommended to monitor for potential bottom heaving. In the event bottom heaving or other issues due to pressurized aquifer conditions occur, the construction and dewatering strategies for the project would need to be revised.

6.5 Geotechnical Issues and Settlement

The conservatively calculated radius of influence of construction dewatering is up to 78.1 m. As buildings and structures lie within the radius of influence, and roadways and services are located within the radius of influence, a geotechnical engineer should be consulted to determine whether geotechnical issues or impacts due to settlement resulting from construction dewatering could be anticipated. A geotechnical engineer should provide any applicable monitoring and/or mitigation recommendations to address any potential geotechnical issues or impacts.

7. MONITORING AND MITIGATION

The following monitoring and mitigation recommendations are provided to ensure construction dewatering does not impact the proposed discharge location, and to ensure any impacts from construction dewatering are promptly and effectively resolved. These monitoring and mitigation recommendations should be incorporated into the PTTW that will be required for construction dewatering, along with any monitoring and mitigation recommendations that may be provided by a geotechnical engineer.

7.1 Discharge Volumes

During all construction dewatering operations, total pumping rates and discharge volumes from all excavations shall be measured using calibrated flow measurement devices (such as flow meters), with daily summation of total pumping rates and volumes and comparison o the permitted rates and volumes to ensure no exceedances occur.

In the event daily water taking rates or volumes exceed permitted values, the construction methodology or dewatering methodology will need to be modified immediately to bring the daily water taking back into compliance with the permitted values.

The dewatering contractor shall maintain records of all daily water taking rates and volumes, including dates and locations of all water takings.

7.2 Discharge Water Chemistry

As discussed in Section 2.6 and its subsections groundwater chemistry samples exhibited measured exceedances of the City of Toronto Storm Sewer Use By-Law criteria limits for TSS, Phosphorus; multiple total metals; dissolved metals including Phosphorus; VOCs including Benzene; PAHs and PCBs. Groundwater chemistry samples also measured exceedances of the City of Toronto Sanitary Sewer By-Law criteria for TSS; total Phosphorus and multiple total metals.

The dewatering contractor must implement appropriate treatment methodologies for the selected discharge location, and all required treatment equipment shall be set up on site prior to any construction dewatering.

7.2.1 Discharge to Municipal Storm or Sanitary Sewers

Field testing will be required to ensure the appropriate Sewer Use By-Law criteria are being met along with any requirements mandated in the Sewer Discharge Permit that will need to be obtained from the City of Toronto.

A suggested initial treatment system could consist of the following:

- A settling tank equipped with Flocculation Blocks (Floc Blocks);
- Two filter vessels (appropriately sized for the dewatering flow rate) equipped with disposable 50-micron filter bags.
- An appropriately designed treatment system to mitigate exceedances of VOCs, PAHs, and PCBs (if required).

Please see Section 7.2.1.1 below regarding collection of trial dewatering chemistry samples and potential modification of treatment system requirements.

7.2.1.1 Assessment and Monitoring

Once the treatment system is set up, short-term trial dewatering should take place to allow representative water samples to be collected upstream (pre-treatment) and downstream (post-treatment) of the system, with sampling for appropriate City of Toronto Sewer Use By-Law parameters for discharge to municipal sewers. In the event post-treatment samples exhibit exceedances of any parameters, the treatment system would need to be modified and chemistry re-testing completed until the post-treatment samples show no exceedances.

During all construction dewatering operations, samples from each dewatering system should be collected on a weekly basis and analyzed for the appropriate suite of parameters. If water chemistry testing shows an exceedance of applicable criteria limits, the dewatering contractor or a water treatment specialist shall be consulted immediately to determine the most effective method of mitigating the exceedance. Treatment should be implemented with follow-up water chemistry sampling to confirm that no further exceedances are measured.

Weekly water chemistry sampling can also include upstream (pre-treatment) sampling to assess whether continued use of treatment systems is required. If upstream sampling results demonstrate that the pumped water meets the appropriate criteria, the treatment system(s) can be taken offline. In the event exceedances are measured in future weekly samples, the treatment system(s) would need to be brought back online immediately.

7.3 Discharge Locations

It is expected construction dewatering discharge will be routed to the municipal storm or sanitary sewer. As noted above, water chemistry samples will need to be collected weekly from the discharge hose(s) and analyzed for the appropriate Sewer Use By-Law criteria limits for discharge to municipal sewers. If any exceedances are measured, water treatment and mitigation measures will need to be implemented immediately and the water will need to be re-tested with a maximum 24-hour turnaround time to confirm compliance with the appropriate criteria limits prior to continued discharge

All conditions specified in the Sewer Discharge Permit (to be obtained for the project from the City of Toronto) must be adhered to during construction dewatering operations.

7.4 Excavation Bottom Heave

The excavation shall be monitored daily for signs of bottom heave. In the event heaving is observed, all excavation work in the immediate area shall cease and soils shall be replaced in the excavation to restore overburden weight. If bottom heave occurs, alternate construction and/or dewatering methodologies will be required to address the issue, and coordination between the construction contractor, the dewatering contractor, and engineering consultants will be required to ensure the situation is effectively mitigated.

This scope of this report does not include detailed analysis of the potential for excavation bottom heave, and it will be the responsibility of the construction contractor and dewatering contractor to identify and mitigate bottom heave in the event it occurs.

7.5 Geotechnical Issues for Adjacent Infrastructure

A geotechnical consulting engineer shall be retained to evaluate all infrastructure, (utility poles, light poles, above ground and underground services, building foundations, roadways, etc.) within the calculated radius of influence of dewatering. Infrastructure such as utility poles, light poles, underground services, etc. shall be braced and supported as required based on the geotechnical engineer's recommendations within the radius of influence of the excavation. Where a geotechnical engineer identified potential concerns, supported infrastructure shall be monitored regularly during construction dewatering activities (or as otherwise recommended by the geotechnical engineer) to ensure no settlement or impacts are occurring. Any settlement or impacts that are noted by the geotechnical consulting engineer shall be assessed and mitigated promptly and effectively using appropriate methodology.

For building foundations and other structures within the calculated radius of influence, the geotechnical consulting engineer shall determine whether to perform a foundation assessment, install crack monitors as required, and monitor the foundations on an appropriate frequency for signs of settlement or other impact. In the event settlement or other impact to foundations occurs, construction dewatering and/or excavation methodologies may need to be revised, dewatering may need to cease temporarily, and the geotechnical consulting engineer shall take all required steps to halt resolve the impact.

7.6 Water Supply Wells

As discussed in Sections 6.1 and 6.2, no impacts to private or municipal water supply wells or surface water intakes from construction dewatering are anticipated due to the distance of potential receptors from the proposed construction dewatering area and the conservatively calculated radius of influence of construction dewatering.

8. CLOSURE

As illustrated in the appended borehole logs subsurface stratigraphy beneath the site consists of fill of varying composition underlain by deposits of clayey silt/silt till of varying thickness, with a thicker layer of silt till encountered in most boreholes at depths of approximately 1.3-2.2 mBGS, overlying weathered shale bedrock. Groundwater was encountered in the in the shale deposits (representing a confined aquifer) at depths of approximately 2.65-7.28 mBGS.

Soil hydraulic conductivity estimates from slug tests of monitoring wells range from 5.9 x 10^{-6} to 2.3 x 10^{-6} m/sec for the silt till and shale deposits in BH1, BH3, and BH4A, indicating a relatively moderately low permeability. BH5 did not reach $T_{0.37}$ and had an estimated soil hydraulic conductivity of <1.0 x 10^{-7} m/sec indicating a low permeability for the shale deposit screened by the monitoring well. Due to a malfunction in the datalogger, slug test data from BH6 has not been included in the report.

The grain size analysis for the clayey silt till encountered in the borehole indicated a hydraulic conductivity of approximately 6×10^{-10} m/sec, indicating a very low permeability soil.

The southern portion of the property is located within a Highly Vulnerable Aquifer (HVA) area, not located within a Significant Groundwater Recharge Area (SGRA), not located within a vulnerable groundwater area, not located within a Groundwater Under Direct Influence (GUDI) of surface water area, and not located within a vulnerable surface water area. Mapping and the MECP WWR database indicates there are no private or municipal water supply wells located within the conservatively calculated radius of influence of construction dewatering.

Construction dewatering calculations conservatively estimate that up to 1,320,800 L/day of pumping required for the 2-level underground parking structure, plus up to 931,700 L/day to manage a significant precipitation event, for a potential total maximum pumping requirement of up to 2,252,500 L/day. The potential for excavation bottom heave due to confined aquifer conditions in the overburden deposits is unlikely; however, monitoring of excavations for bottom heave will be an important part of the construction dewatering monitoring program.

A Category 3 Permit to Take Water (PTTW) will be required to permit pumping during construction dewatering as the anticipated maximum dewatering rates are above the 400,000 L/day EASR threshold.

Water chemistry analyses indicate exceedances Storm and Sanitary Sewer Use By-Law parameters; therefore, treatment of construction dewatering discharge will be required prior to directing the discharge to municipal sewers. A Sewer Discharge Permit from the City of Toronto will be required to discharge to municipal sewers.

Monitoring and mitigation recommendations have been provided to address potential impacts of construction dewatering on site and discharge of water to municipal sewers.

We trust that this report satisfies your present requirements, and we thank you for this opportunity to be of service. If you have any questions, or require further hydrogeological consulting services, please feel free to contact the undersigned directly.

Respectfully submitted,

Sara Khawja, M.Sc., GIT Groundwater Analyst

PRACTICING MEMBER 2285

Chris Helmer, B.Sc., P. Ceo, Senior Hydrogeologist MECP Licensed Well Contractor and Class 5 Well Technician www.hydrog.ca

9. LIMITATIONS AND USE

This report has been prepared for the exclusive use of the Client indicated in Section 1. Chris F Helmer and Hydrogeology Consulting Services Inc. (HCS) hereby disclaim any liability or responsibility to any person or party for any loss, damage, expense, fines, or penalties which may arise from the use of any information or recommendations contained in this report by anyone other than the Client.

The conclusions and recommendations provided in this report are not intended as specifications or instructions to contractors. Any use contractors may make of this report, or decisions made based on it, are the responsibility of the contractors. Contractors must accept responsibility for means and methods of construction they select, seek additional information if required, and draw their own conclusions as to how the subsurface conditions may affect them.

In preparing this report Chris F Helmer and HCS have relied in good faith on information provided by individuals and companies noted in this report, and assumes that the information provided is factual and accurate. No responsibility is accepted for any deficiencies, misstatements, or inaccuracies contained in this report as a result of errors, omissions, misinterpretations, or fraudulent acts in the resources referenced, or of persons interviewed or consulted during the preparation of this report.

The report and its complete contents are based on data and information collected during investigations conducted by Chris F Helmer and HCS, and pertains solely to the conditions of the site at the time of the investigation, supplemented by historical information and data as described in this report. It is important to note that the investigation involves sampling of the site at specific locations, and the conclusions in this report are based on the information gathered. Limitations of the data and information include the fact that conditions between and beyond the sampling locations may vary; that the assessment is dependent upon the accuracy of the analytical data generated through sample analysis; and that conditions or contaminants may exist for which no analyses have been conducted. Furthermore, no assurance is made regarding potential changes in site conditions and/or the regulatory regime (standards, guidelines, etc.), subsequent to the time of investigation.

The professional services provided for this project include only the hydrogeological aspects of the subsurface conditions at the site, unless otherwise stated specifically in the report. No other warranty or representation is either expressed or implied, as to the accuracy of the information or recommendations included or intended in this report.

10. REFERENCES

Armstrong, D.K. and Dodge, J.E.P. 2007. *Paleozoic Geology Map of Southern Ontario; Ontario Geological Survey.*

Chapman, L.J. and Putnam, D.F. 2007. *Physiography of Southern Ontario*. Ontario Geological Survey.

Freeze, R.A. and Cherry, J.A. 1979. *Groundwater*. Englewood Cliffs, New Jersey: Prentice-Hall.

Ministry of Natural Resources and Forestry (MNRF). 2020. Make a Map: Natural Heritage Areas. Online GIS.

Karrow, P.F. & Rogers, D.P. & 1961. Metropolitan Toronto Bedrock Contours. Ontario Department of Mines. Preliminary Map 102

Ontario Geological Survey. 1991. *Bedrock Geology of Ontario, Southern Sheet*. Ontario Geological Survey Map 2544.

Ontario Ministry of Environment, Conservation and Parks (MECP). 2020. Source Protection Information Atlas. Online GIS.

Ontario Ministry of Environment, Conservation and Parks (MECP). 2020. Water Well Information System. Online GIS.

Ontario Ministry of the Environment. 2003. *Stormwater Management Planning and Design Manual.*

Powers, J.P. et al. 2007. *Construction Dewatering and Groundwater Control, New Methods and Applications*. Third Edition.

Sharpe, D.R. 1980. *Quaternary Geology of Toronto and Surrounding Area.* Ontario Geological Survey Preliminary Map P.2204.

APPENDIX A: DRAWINGS

Drawing 1 – Location Plan Drawing 2 – BH Location Plan (SOLA Engineering, September 2023) Master Plan (Hariri Pontarini Architects, September 2024)

SCALE 1:700 **THE QUEENSWAY & ALGIE STREET DEVELOPMENT** Date: 17th Sept 2024 HARIRI PONTARINI ARCHITECTS

APPENDIX B: TABLES

Table 1 – Groundwater Level Measurements

Table 2 – Hydraulic Conductivity Estimates

Table 3 – Water Chemistry Analysis Results

			20-Sep-23		
Name	Ground Surface Elevation (m)	Stickup (m)	WL (mBTOP)	WL (mBGS)	WL (m)
BH1	101.60	-0.12	3.54	3.66	97.95
BH3	100.00	-0.13	3.20	3.33	96.68
BH4A	100.52	-0.12	2.53	2.65	97.88
BH5	100.27	-0.10	3.40	3.50	96.77
BH6	101.83	-0.05	7.23	7.28	94.55

The Queensway and Fordhouse Boulevard, Etobicoke Table 1 - Groundwater Level Measurements

m - metres (respective to local datum) mBGS - metres Below Ground Surface mBTOP - meters Below Top

The Queensway and Fordhouse Boulevard, Etobicoke Table 2 - Hydraulic Conductivity Estimates

Name	Soil Sample Depth or Screened Interval (mBGS)	Soil Type	Analysis Method	Hydraulic Conductivity (m/sec)
BH1	11.3 - 12.8	Shale (weathered)	Hvorslev	5.4 x 10 ⁻⁶
BH1	1.52 - 2.01	Fill - Clayey Silt	Kaubisch	6 x 10 ⁻¹⁰
BH3	2.3 - 3.8	Silt Till and Shale	Hvorslev	2.3 x 10 ⁻⁶
BH4A	11.28 - 12.8	Shale (weathered)	Hvorslev	5.9 x 10 ⁻⁶
BH5	3.05 - 4.57	Shale (weathered)	Hvorslev**	<1 x 10 ⁻⁷

mBGS - metres Below Ground Surface

m/sec - metres per second

 * - D₁₀ value was not provided; therefore, the hydraulic conductivity value is considered approximate

** - T_{0.37} was not achieved; therefore, the hydraulic conductivity value is considered approximate

The Queensway and Fordhouse Boulevard, Etobicoke Table 3 - Water Chemistry Analysis Results 20-Sep-23

Parameter	BH/MW 6	BH/MW 5	Toronto Storm Sewer Criteria Limit(s)	Toronto Sanitary Sewer Criteria Limit(s)
рН	8.06	8.62	6.0-9.5	6.0-11.5
Total Suspended Solids (mg/L)	37	2,690	15	350
Phosphorus, Total (mg/L)	1950	28.1	0.4	10
E.coli (CFU/100 mL)	0	0	200	
TOTAL METALS				
Aluminum (mg/L)	7.84	298	-	50
Arsenic (mg/L)	0.0131	0.0605	0.02	-
Chromium (mg/L)	0.0124	0.434	0.08	-
Copper (mg/L)	0.0184	0.327	0.04	2
Lead (mg/L)	0.007	0.0489	0.12	1
Manganese (mg/L)	0.357	7.34	0.05	5
Nickel (mg/L)	0.0158	0.508	0.08	-
Zinc (mg/L)	0.0462	1.0200	0.04	2
DISSOLVED METALS				
Phosphorus (mg/L)	<0.50	<0.50	0.4	10
AGGREGATE ORGANICS				
BOD (mg/L)	<3.0	4.6	15	300
Oil and Grease, Total	<5.0	<5.0	-	-
Phenols (4AAP) (mg/L)	<0.0010	<0.0050	0.008	1
VOLATILE ORGANIC COMPOUNDS				
Benzene (µg/L)	<0.50	5.3	2	10
Ethylbenzene (µg/L)	<0.50	<0.50	2	160
Toluene (µg/L)	<0.50	<0.50	2	16
Trichloroethylene (µg/L)	<0.50	<0.50		
Xylenes (Total) (µg/L)	<0.50	<0.50	4.4	1400
POLYCYCLIC AROMATIC HYDROCARBONS				
Total PAHs (µg/L)	<1.75	2.6	2	5
Polychlorinated Biphenyls				
Total PCBs (µg/L)	<0.060	<0.600	0.4	1

i- All measured concentrations are in units indicated.

ii- All metals concentrations are total metals, including metals adsorbed on to suspended sediments

iii- Concentrations in *bold italicized text* exceed Storm Sewer criteria.

iv- Concentrations in red text exceed Sanitary Sewer criteria

APPENDIX C: BOREHOLE LOGS

Boreholes BH1 – BH12

ENCLOSURE No. 2

				R	ECO	RD C)F B(DREF	IOL	E No	. BH	11		1 (OF 2		ME	TRIC	
PROJECT NUMBER <u>11240</u> NAME_QEW + 427 Development DATUM SOIL PROFILE		LOC	ATIC	DN _	NThe Queensway and Fordhouse Boulevard, Etobicoke, Onatrio									ORIGINATED BY					
		CLIE	NT	137	0443 0	ntario Li	mited c/							em Augers					
		DAT	E _2	2023.09	9.11 - 20	023.09.1	<u>2</u> NO	RTHING	G			EASTING							
			5	SAMPL	ES	~	ш	DYNAMIC CONE PENETRA RESISTANCE PLOT			ATION &				i				
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER		"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 40 60 8 SHEAR STRENGTH KF O UNCONFINED + QUICK TRIAXIAL X				80 100 kPa + FIELD VANE		PLASTIC MOISTURE LIMIT CONTENT Wp W WATER CONTEN 20 40			W _L	NII Meigh	REMARKS & GRAIN SIZ DISTRIBUTI (%)
<u>0.0</u> 0.1	Asphalt ASPHALTIC CONCRETE - 75 /	-					_	2							40			kN/m ³	GR SA SI
0.1	\mm thick GRANULAR BASE/SUBBASE (sand and gravel) - 685 mm thick	. • 	1	SS	15		ł							o					
0.8	FILL - clayey silt, trace gravel, brown, moist		2	SS	12									c					
			3	SS	17										0				
			3		17														
2.3	CLAYEY SILT TILL- brown, compact , moist	8	4	SS	32									0					
3.0	SHALE - completely weathered, gray	21	5	SS	99/ 23 cm									0					
			6	AS										0					
			7	AS										0					
	- some clay		8	AS	50/ 8 cm									0					
	Continued Next Page																		

				R	ECO	RD O	F BC	REH	IOLE	No	. BH	1		2 (OF 2		ME	TRIC	
PROJ	ECT NUMBER 11240	LOC	ATIO	DN _	The Q	ueensw	ay and	Ford	nouse	Boulev	vard, E	tobico	ke, Or	atrio			ORIG	INATED	BY_RT
NAME	QEW + 427 Development	CLIE	NT	1370)443 O	ntario Lir	nited c/c	RSM	Canada	M	ETHC	D So	ild Ste	m Aug	ers		COM	PILED BY	′ <u></u>
DATU	Μ	DAT	E _2	2023.09	.11 - 20	23.09.12	NOR	THIN	G			_ EA	STING	÷			CHEC	CKED BY	HH
	SOIL PROFILE		5	SAMPL	ES	ER 0	SCALE	DYNA RESIS	MIC CO TANCE	NE PE PLOT		ATION &		PLASTI	NATI	JRAL	LIQUID	F	REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	түре	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SC/	SHEA 0 UI • QI	0 4 IR STF NCONF JICK TF 0 4	RENG INED RIAXIAL	TH kP + - ×	FIELD	VANE	W _P WAT		TENT V	LIMIT W _L 		& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	SHALE - completely weathered, gray <i>(continued)</i>																	NVIII	
13.0	End of Borehole at the Targeted Depth; Borehole was Open and Water at 2.5 m Below Existing Ground Surface Upon Completion of Drilling Period.		19		50/ 5 cm/														

				R	ECO	RD O	F BC	OREH	OLE	No	BH	2		1 (DF 1	_	ME	TRIC	
PRO	IECT NUMBER 11240	LOC	ATIO	DN _	The C	lueensw	ay and	d Fordho	use E	Boulev	ard, E	tobico	ke, Or	natrio			ORIG	INATED	BY <u>RT</u>
	QEW + 427 Development																COMF	PILED B	Y RT
	JM																		
	SOIL PROFILE			SAMPL		<u> </u>		DYNAMI RESIST/					>						
<u>ELEV</u> DEPTH		STRAT PLOT	NUMBER	ЭЦИ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHEAR O UNC QUI	40 STR CONFI	D 60 RENGT NED) 8 [H kP: + . ×	0 10 a FIELD ⁷ LAB VA			E NATU MOIS CON V TER CC 0 4		LIQUID LIMIT ——- Г (%) Ю		REMARKS & GRAIN SIZE DISTRIBUTIC (%) GR SA SI
0.0 0.1	ASPHALTIC CONCRETE - 85 mm thick GRANULAR BASE/SUBBASE (sand and gravel) - 530 mm		1A	SS	34									0					
0.6			1B 2	SS	27	-								0					
1.5			3	SS	41	-								0					
			4	SS	50/ \ <u>13 cm</u> ,									ο					
3.0	SHALE - completely weathered, gray		5	SS SS	89/ 23 cm 50/ 10 cm	-								0					
6.1	Start of rock coring;		7.	. 33	50/ 5 cm	_								۵					
	,																		

 $+^3$, \times^3 : Numbers refer to O 3% STRAIN AT FAILURE Sensitivity

	ROCK	CORE LOG		IECT: Q									C	OF	RINC	g NO.:	
 PF				ATION: <u>1</u> 'ATION: <u>1</u>	he	Que	en	SV		d Fordhpuse FUM:						РЦЭ	
	DNTRACTO							Г	 RILL 1							BH2	
DA	TE START	ED: <u>13/09/2023</u> AT	:							INISH: 13/0	9/2023		AT	_			
			INCL	LINED: 🗆													
	DORDS. N:	E:								R: <u>HH</u>		W	FAT	HEE	RING		
_				VER,		RQ	D					1	_,				
DEPTH	ROCK TYPE	DESCRIPTION		R RI	(PI	ERC)	OTRE OTRE	DEFEC	т					REMAR	(S
D				CORE RUN AND RECOVERY					FRACTURES PER FOOT	DESCRIP	TION		~ ~				
		moderate to slightly	-	₹ 1.524/	0	25 50) ⁷⁵ 10	00	ш			FF	zΥγ	<u>/w</u>	×w Xw		
		weathered, grey, moder		1.575 =97%													
7 2		- weak in strength, intens	se to -														
7.2		_ moderately fractured, TCR: 97%	-	-													
		RQD: 85%	_														
7.6		-	-	-													
	SHALE	-	-														
		-	-	-													
8		_	-	-								\square				_	
		_	-														
		_	-														
8.4		TCR: 100%	-	1.473/			*		-					ϕ			
		– RQD: 76%	-	1.473 =100%		++			-			\vdash	+			-	
		-	=														
8.8	SHALE	-	-														
		-	-														
9.2		_	_						-				_	0		-	
		- moderate to slightly	-											Ĭ			
		weathered, grey, moder weak in strength, mode															
9.6	SHALE	slightly fractured,	-														
		-	_						_							_	
		moderate to slightly	=	1.524/		+		-	-					$\left \right $			
10		weathered, grey, moder		1.524 =100%													
		 weak in strength, mode fractured, 	rately -														
10.4		- 75 mm limestone laye	er at														
10.4		[−] 10.8 m [−] - 50 mm limestone laye		-									T				
	SHALE	- 50 mm imestone laye - 11.2 m	-1 al -	-													
10.8		_ TCR: 100%	-	-													
		_ RQD: 80%	-	-													
		_	_	1		++		-				$ \uparrow $	+	+		-	
11.2		-	-														
		_ moderately weathered,		1.524/ 1.524													
11.6		_ moderately weak in stre intensely fractured,	ength,_	=100%	$\left - \right $	++			-			$\left \right $	+	+		-	
		- 75 mm limestone laye	er at														

	ROCK	CORE LOG						evelopment			CO	RIN	G NO.:	
				ATION: <u>T</u> ATION: _	he Qu	leer	ISV	vay and Ford DATUM:	dhpuse					
				<u>AIION.</u>				 RILL TYPE:					BH2	
		ED: 13/09/2023 AT	·						H: <u>13/09/2023</u>	A	T:			
OF	RIENTATIO		INCI	INED:			В	EARING: _			_			
CC	DORDS. N:	E	•				-	OGGER: <u>H</u>		_				
				L R	R	QD		DISCONTINUIT	TIES	WE	ATHE	RING		
Η	ROCK	DECODIDITION		RUN	(PER	CEN	T)	L RES						KO.
DEPTH	TYPE	DESCRIPTION		CORE RUN AND RECOVERY				D PEF	DEFECT DESCRIPTION				REMAR	N3
				ANDC	0 ²⁵ 5	50 ⁷⁵	00	FRACTURES PER FOOT		FR	SWAN	, wx ^w		
		11.4 m			Ĭ	ΪΤ								
12		 - 100 mm limestone lay - 12.1 m 	yer at											
	SHALE	- 75 mm limestone lay	er at _											
		12.4 m	-	4										
12.4		TCR: 100% RQD: 18%	-	-										
		-	-	-										
		_	-	-										
12.8			_	-			-							
		End of Rock Core at th												
13.2		 Targeted Depth of 12.9 Below Ground Surface 		-										
13.2			, -											
		_	_	-										
13.6		_	-	-										
10.0		_	-	-										
		_	-	-										
14		_	-	-										
<u> </u>		_	_	-										
		-	-											
14.4			-											
		_	-	-										
			_	-										
14.8		_	-	-										
		_	-	-										
$\left - \right $		F	-											
15.2		-	-											
			-]										
		_	-											
15.6		-	-											
		-	-											
		 -	-	-										
16		-	-											
			-											
		F	-	1										
16.4		-	-											
		_	-											
16.8														

				R	ECO	RD O	FBC	OREHC	LE	No.	BH	3		1 (OF 1		ME	TRIC	
PRO	JECT NUMBER 11240	LOC	CATIO	ОМ _	The C	ueensv	vay an	d Fordhou	se Bo	oulev	ard, E	tobico	ke, Or	natrio			ORIG	INATED	BY <u>RT</u>
NAM	E QEW + 427 Development	CLIE	ENT	137	0443 C	ntario Lir	nited c/	o RSM Car	nada	М	ETHC	D So	ild Ste	m Aug	ers		СОМ	PILED B	Y RT
DATI	JM	DAT	Е_	2023.09	9.12 - 2	023.09.12	NOF	RTHING				_ EA	STING	G			CHEC	CKED BY	<u>́ НН</u>
	SOIL PROFILE		5	SAMPL	ES	~	щ	DYNAMIC RESISTA	CON		NETRA	TION 8)						
<u>ELEV</u> DEPTH		STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 SHEAR O UNCO O QUIC	40 STRE ONFIN K TRI/	60 ENG IED AXIAL	0 8 FH kP + - ×	0 10 a FIELD ⁷ LAB VA				TENT w o ONTEN		Å UNIT WEIGHT	REMARKS & GRAIN SIZE DISTRIBUTIC (%)
0.0	Asphalt ASPHALTIC CONCRETE - 85 mm thick GRANULAR BASE/SUBBASE (sand and gravel) - 650 mm thick	• • С	1	SS	14	X X	_	20	40	60	0 8	0 10	0	0	0 4	10 (50	kN/m ³	GR SA SI
0.8			2	SS	6														
1.5	CLAYEY SLIT TILL- trace gravel, grey to brown, oxidation, compact , moist		,	SS	24									o					
2.2	SILT TILL - containing shale fragments, grey, dense, moist	0 0	4	SS	49									0					
6.0	weathered, gray		5	SS SS	50/ 5 cm 50/ 8 cm									0					

	ROCK	CORE LOG		IECT: QI							_	СС	RIN	١G	NO.:	
				ATION: <u>T</u> ATION: _	he Q	lue	ensv	vay an DA	d Fordhpuse		-				БЦЭ	
	ONTRACTO								ГУРЕ:		-				BH3	
		ED: <u>12/09/2023</u> AT	:							23	A	T:				_
			INCI	LINED: 🗆			E	BEARIN	NG:							
	DORDS. N:	E	:				L	OGGE					RIN			_
				CORE RUN AND RECOVERY	I	RQD)	0 SCON	ITINUITIES					G		
DEPTH	ROCK	DESCRIPTION		E RL	(PEI	RCE	NT)	URE T R	DEFECT						REMARKS	
DE	TYPE			COR D RE				PE	DESCRIPTION							
				AN	0 25	⁵ 50 ⁷	′ ⁵ 100	Н. Н			FRS	Υ _{λιν}	HW Y X	w		
		– GEORGIAN BAY – FORMATION	_	0.635/ 1.067				FRACTURES PER FOOT								
		intensely weathered,	grey, _	=60%												
6.4	SHALE	weak in strength, very														
		intensely fractured TCR:60%	-	-												
		- RQD:0%	-	-												
6.8		 TCR:95%		1.473/	*	_		-			+	\square	0			
		RQD:20%	-	1.549 =95%												
	SHALE	-	-													
7.2				-									9			
		-intense to moderately weathered, grey, mode				_		-			+	$\left \right $				
		weak in strength, intne														
7.6		- fractured	-	1												
	SHALE	-	-													
		-	_													
8		-	-	-												
		-	-													
8.4		-moderately to slightly		1.473/		*		_								
0.4		weathered, grey, mode	rately ⁻	1.524 =97%												
		 weak in strength, inten fractured 	sely –					-								
8.8		TCR=97%	-													
		_ RQD=47%	-	-												
	SHALE	-	-	-												
9.2	0	_	_	1		_		_		-	+	\vdash				
		-	-	-												
			-													
9.6			-													
		_	_	-				_								
		- TCR:98%	-	1.475/ 1.524		\square		1								
10		_ RQD:27%	-	=97%												
		_	-	-												
		-	-	-												
10.4		_	_			\uparrow		1		F	T	$ \uparrow $				
	SHALE		-													
10.8		-	-	-												
10.0			-	-												
				1				1	1							

	BUCK	CORE LOG		JECT: QE								_ (CO	RIN	NG N	10.:		
				ATION: <u>T</u> 'ATION:	he Qı	uee	ensv	vay and DATI	Fordhpus	se		-					•	
	ONTRACTO						г	 DRILL T				-				BH	3	
DA	ATE START	ED: 12/09/2023 AT	:						NISH: 12	/09/2023		AT	•					
OF	RIENTATIO		INCI	LINED: 🗆			E	BEARIN	G:									
CC	DORDS. N:	E	:	1			_ L	OGGEF	-		1				-			
				R ERY	R	QD		DISCONT	INUITIES			'EA1	ΓHE	RIN	G			
DEPTH	ROCK	DESCRIPTION		CORE RUN AND RECOVERY	(PER	RCEN	NT)	LRES	DEE	FOT						F	REMARKS	:
DEI	TYPE	DECONTINUN		ORE				PEF	DEF DESCR	IPTION								
				AND	0 ²⁵	50 ⁷⁸	5 100	FRACTURES			F	R ^{SV}	Μw	۱W X۱	N			
		_	_															
11.2		_	_															
		_	-	-														
		70 mm limestone lay	er at -	1.45/ 1.524	*			1					Ŷ					
11.6	i i	_ 11.8 m	_	=95%				-							_			
		TCR:95% RQD:30%	-															
		-	-															
12		_	-	-														
	SHALE	_	-															
			_															
12.4		_	-															
		_	-															
		-	-	_														
12.8			_	-				-										
		- End of Rock Core at th																
		_ Targeted Depth of 12.9 Below Ground Surface) m															
13.2			-															
		_	-	-														
			_															
13.6		_	-															
		_	-															
		_	-															
14			_	-														
		_	-															
		-	-	-														
14.4		_	-	-														
		_	-															
			_															
14.8			-															
		_	-															
		_	-															
<u>15.2</u>		 	-	-														
		_	-	-														
15.6		_	-															
15.0			-	-														
		–	-															
		⊢	_	1														

		RE	COF	rd of	BC	REHOLE No	o. BH4A	1 OF 2	METRIC	;
	CATIC	DN _	The G	ueensv	/ay an	d Fordhouse Boul	evard, Etobicoke	, Onatrio	_ ORIGINATED	BY RT
	ENT	137	0443 O	ntario Lir	nited c	o RSM Canada	METHOD Soild	Stem Augers	_ COMPILED B	Y <u>RT</u>
_ DAT	Έ_2	2023.09	9.11 - 20)23.09.1 ²	NO	RTHING	EAST	ING	_ CHECKED B	r <u>H</u> H
	5	SAMPL	ES	~	ш	DYNAMIC CONE F	PENETRATION &			
STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATEF CONDITIONS	ELEVATION SCAL	20 40 SHEAR STREN O UNCONFINED ● QUICK TRIAXI	60 80 100 GTH kPa + FIELD VA AL × LAB VAN			REMARKS & GRAIN SIZE DISTRIBUTIO (%) GR SA SI
/ ·				रा ह						
	1A 1B	SS	11	XX				0		
	2	SS	14					o		
	3	SS	40					o		
• 	4	SS	86/ 25 cm					0		
			50/							
	5	SS						0		
	6	AS						o		
	7	SS	50/ 8 cm					0		
	8	AS	50/ 13 cm					0		
		CLIENT	LOCATION CLIENT137 DATE _2023.03 SAMPL 	LOCATION The C CLIENT 1370443 O DATE 2023.09.11 - 20 SAMPLES SAMPLES 10 H H H H H 18 18 2 SS 14 6 AS 500° 5 SS 500°	LOCATION <u>The Queensy</u> CLIENT <u>1370443 Ontario Lir</u> DATE <u>2023.09.11 - 2023.09.17</u> <u>SAMPLES</u> <u>NUMNNN</u> <u>A</u> <u>A</u> <u>A</u> <u>B</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>B</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u>	LOCATION	LOCATION The Queensway and Fordhouse Bould CLIENT 1370443 Ontario Limited do RSM Canada DATE 2023.09.11 - 2023.09.11 NORTHING Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples </td <td>LOCATION <u>The Queensway and Fordhouse Boulevard, Etobicoke</u> CLIENT <u>1370443 Ontario Limited do RSM Canada</u> <u>METHOD Sold</u> DATE <u>2023.09.11 - 2023.09.11</u> NORTHING <u>EAST</u> <u>SAMPLES</u> <u>WW 0000000000000000000000000000000000</u></td> <td>LOCATION The Queensway and Fordhouse Boulevard, Etobicoke, Onatio CLIENT 137043 Ontario Limited do RSM Canada METHOD Solid Stern Augers DATE 2023.09.11 - 2023.09.11 NORTHING EASTING Total Barbard With Market Contraction Find State PLOT Total Barbard With Market Contraction Find State PLOT Total Barbard With Market Contraction With Market Contraction Total Barbard With Market Contraction Outcontraction Total Barbard With Market Contraction Outcontraction Total Barbard With Market Contraction Outcontraction Total Barbard Total Barbard Outcontraction Outcontraction Total Barbard Total Barbard Outcontraction Outcontraction Outcontraction Total Barbard Total Barbard Outcontraction Outcontraction Outcontraction Total Barbard Total Barbard Outcontraction Outcon</td> <td>LOCATION The Queensway and Forthouse Boulevard, Eloblocke, Onatio ORGINATED CLENT 1370443 Ontario Limited do RSM Canada METHOD. Solid Stem Augers COMPILED B DATE 2023.09.11-2023.09.11 NORTHING EASTING CHECKED PD Table SAMPLES Witters CHECKED PD SAMPLES Witters CHECKED PD Table Witters CHECKED PD SAMPLES Witters CHECKED PD Table Witters CHECKED PD SAMPLES Witters CHECKED PD Table Witters CHECKED PD SAMPLES Histors CHECKED PD SAMP</td>	LOCATION <u>The Queensway and Fordhouse Boulevard, Etobicoke</u> CLIENT <u>1370443 Ontario Limited do RSM Canada</u> <u>METHOD Sold</u> DATE <u>2023.09.11 - 2023.09.11</u> NORTHING <u>EAST</u> <u>SAMPLES</u> <u>WW 0000000000000000000000000000000000</u>	LOCATION The Queensway and Fordhouse Boulevard, Etobicoke, Onatio CLIENT 137043 Ontario Limited do RSM Canada METHOD Solid Stern Augers DATE 2023.09.11 - 2023.09.11 NORTHING EASTING Total Barbard With Market Contraction Find State PLOT Total Barbard With Market Contraction Find State PLOT Total Barbard With Market Contraction With Market Contraction Total Barbard With Market Contraction Outcontraction Total Barbard With Market Contraction Outcontraction Total Barbard With Market Contraction Outcontraction Total Barbard Total Barbard Outcontraction Outcontraction Total Barbard Total Barbard Outcontraction Outcontraction Outcontraction Total Barbard Total Barbard Outcontraction Outcontraction Outcontraction Total Barbard Total Barbard Outcontraction Outcon	LOCATION The Queensway and Forthouse Boulevard, Eloblocke, Onatio ORGINATED CLENT 1370443 Ontario Limited do RSM Canada METHOD. Solid Stem Augers COMPILED B DATE 2023.09.11-2023.09.11 NORTHING EASTING CHECKED PD Table SAMPLES Witters CHECKED PD SAMPLES Witters CHECKED PD Table Witters CHECKED PD SAMPLES Witters CHECKED PD Table Witters CHECKED PD SAMPLES Witters CHECKED PD Table Witters CHECKED PD SAMPLES Histors CHECKED PD SAMP

 $+^3$, \times^3 : Numbers refer to O $^{3\%}$ STRAIN AT FAILURE Sensitivity

				RE	COF	rd of	F ВО	REH	OLE	No.	BH4	IA		2 (OF 2		ME	TRIC	
PROJ	ECT NUMBER 11240		ATIC	DN _	The G	lueensv	vay and	d Fordł	nouse	Boule	/ard, E	tobico	ke, Or	natrio			ORIG	INATED	BY RT
NAME	QEW + 427 Development	CLIE	ENT	137	0443 O	ntario Lir	nited c/	o RSM	Canada	_ N	IETHC	D So	ild Ste	m Aug	ers		СОМ	PILED B	r RT
DATU	M	-								_							-		
	SOIL PROFILE		s	SAMPL	ES	~	ш	DYNA			NETRA	ATION @	>						
<u>elev</u> Depth	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA 0 UI 0 QI	0 4 R ST I NCONF JICK TI	0 6 RENG INED RIAXIAI	0 8 TH kP + -	0 10				ITENT W O ONTEN	LIQUID LIMIT W _L T (%)		REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CI
13.4	SHALE - completely weathered, gray (continued)		10	AS	50/ 5 cm									0				kN/m ³	GR SA SI CI

				RE	COF	rd of	- во	REHOLE	No. E	3H4B		1 OF	= 1	ME	TRIC	
PRO	ECT NUMBER 11240	LOC	ATIC	DN _	The C	ueensw	/ay an	d Fordhouse B	ouleva	rd, Etobicok	æ, Or	atrio		ORIG	INATED	BY_RT
NAME	QEW + 427 Development		INT	137	0443 O	ntario Lin	nited c/	o RSM Canada	ME	THOD Soil	d Ste	m Auger	rs		PILED B	Y <u>RT</u>
DATU	JM	DAT	E _2	023.09	9.11 - 20	023.09.11	NOF	RTHING		EAS	STING	÷		CHEC	KED BY	<u></u>
	SOIL PROFILE		s	AMPL	FS	~	ш	DYNAMIC CON RESISTANCE I	IE PEN	ETRATION &						
<u>elev</u> Depth	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE		60 ENGTH IED AXIAL	80 100 H kPa + FIELD V × LAB VA	ANE	W _P	NATURAL MOISTURE CONTENT W 	LIQUID LIMIT W _L IT (%)		REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI C
0.0	Aspnait Direct Augur to 3.8 m for monitoring well installation										~					

ELEV DESCRIPTION Image: Constraint of the second s		TRIC	ME	1	1 OF	1		BH5	No. I	HOLE	ORE)F B	RD C	ECO	R				
NAME QEV + 427 Development CLIEN 1370443 Onato Limited do RSM Canda MEHDD_Solid Stem Augers COMPLED BY DATU	BY <u>RT</u>	INATED	ORIG		io	Onatrio	oicoke, O	d, Etobic	Boulevar	house	nd For	way a	lueens	The C	DN _	ATIC	LOC	DJECT NUMBER 11240	PROJ
DATUM DAT DAT 2023 09 13 - 2023 09 13 - 2023 09 13 ORTHING EASTING CHECKED BY SOLL PROFILE SAMPLES IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			-																
SOIL PROFILE SAMPLES Product of the set of th																			
LEV DESCRIPTION Date of the transmission of the transmission of the transmission of t	[ON Ø	TRATION		MIC CC	DYN	ш	~	FS		5		SOIL PROFILE	
0.1 ASPHALTIC CONCRETE - 85 (sand and grave) - 430 mm 14 SS 23 0.5 thick GRANULAR BASE/SUBBASE (sand and grave) - 430 mm 14 SS 23 0.5 thick trace gravel, trace organic, dark brown, moist 2 SS 12 - occasionally inferred cobbles and boulders 3 SS 34 - occasionally inferred cobbles and boulders 3 SS 50/ 3.0 SHALE - completely weathered, gray - 5 SS 50/ 0.5 SS 50/ 0 0 0 3.0 SHALE - completely weathered, gray - 5 SS 50/ 0 0 0.5 SS 50/ - - 0 0 0 3.0 SHALE - completely weathered, gray - 5 SS 50/ 0 0 0	REMARKS & GRAIN SIZE DISTRIBUTIC (%) GR SA SI	γ	LIMIT W _L T (%)	ONTENT W O CONTEN	VATER C		100 LD VANE B VANE	80 kPa + FIELD × LAB \	0 60 RENGTH NED RIAXIAL	20 4 AR ST F NCONF UICK TI	SHI	ELEVATION SCAL	GROUND WATER CONDITIONS				STRAT PLOT	/ DESCRIPTION	EPTH
GRANULAR BASE/SUBBASE 0.5 (HLL - sity sand, some clay, Fill - ciayer sit, frace gravel, race gravel, trace organic, dark thrown, moist - occasionally inferred cobbles and boulders 3 SS 34 - occasionally inferred cobbles 3 SS 50 3.0 SHALE - completely weathered, gray (B SS 50) (C SS											+		হাচ					ASPHALTIC CONCRETE - 85 /	<u>0.0</u> 0.1
drace gravel, trace organic, / FILL - clayey silt, trace gravel, trace sand, brown, moist 2 SS 12 - occasionally inferred cobbles and boulders 3 SS 34 o 2.3 SILT - containing shale fragments, grey, dense, moist 4 SS 43 o 3.0 SHALE - completely weathered, gray 5 SS 500 o o 6 SS 500 500 0 o o					0							İ		23	SS		\mathbf{X}	GRANULAR BASE/SUBBASE (sand and gravel) - 430 mm thick	0.5
- occasionally inferred cobbles and boulders 2.3 SILT - containing shale fragments, grey, dense, moist 3.0 SHALE - completely weathered, gray 6 SS 507 6 SS 507 6 SS 507 6 SS 507 6 SS 507 6 SS 507 7 S9 507 7					0	0								12	SS	2	×	, trace gravel, trace organic, / dark brown, moist / FILL - clayey silt, trace gravel,	0.8
and boulders 2.3 SILT - containing shale fragments, grey, dense, moist 3.0 SHALE - completely weathered, gray 6 SS 50/ 6 SS 50/ 6 SS 50/ 8 cm 6 SS 50/ 8 cm 6 SS 50/ 8 cm 7 8 8 cm 7 8 8 cm 7 8 8 cm 8 c					>	0								34	SS	3	\bigotimes		
3.0 SHALE - completely weathered, gray 5 SS 50/ 8 cm 0 0 6 SS 50/ 5 cm 0 0																	×	and boulders	
					>	0								43	SS	4		3 SIL I - containing shale fragments, grey, dense, moist	2.3
					>	0								\ <u>8 cm</u> ,	ss	6		0 SHALE - completely weathered, gray	3.0
						0						g		50/ \ <u>5</u> cm,	8	7		1 Start of rock coring	6.1

	ROCK	CORE LOG										_ (CO	RIN	G	NO.:
				ATION: <u>1</u> 'ATION: <u>1</u>	he	Que	een	ISV		d Fordhpuse FUM:		-				
	ONTRACTO							D	RILL 1			-				BH5
DA	TE START	ED: 14/09/2023 AT	:					D	ATE F	INISH: 14/09/2023		AT	:			
	RIENTATIOI DORDS. N:	N: VERTICAL: 🗆 E		LINED: 🗆					EARIN OGGE	IG:						
	JURDS. N.	⊑									W	/FA	THE		3	
_				VER	(D)	RQ	D	- \	<u>ທ</u>		-					
DEPTH	ROCK TYPE	DESCRIPTION		E RI	(PI	ERC	ENI)	TURE OT	DEFECT						REMARKS
ä				CORE RUN AND RECOVERY					RACI FO	DESCRIPTION						
				4 1.425/	0	²⁵ 50) ⁷⁵ 1	00	Ë		F	R R	Myt	W XY	v	
	·	- GEORGIAN BAY FORMATION	-	1.524 =94%					FRACTURES PER FOOT							
7.2		moderate to slightly	-													
		weathered, grey, mode weak in strength, mode		_												
		- fractured,		_												
7.6		_ TCR: 94%	-	_												
	SHALE	_ RQD: 88%	-	_												
		-	-	-												
8		_	-													
		-	-													
			-													
8.4				1.475/			*						ļ			
		moderate to slightly weathered, grey, mode	rately [–]	1.499												
		weak in strength, inten		=98%												
8.8		 fractured, 90 mm limestone lay 	- 	_												
		90 mm milestone layo	er at 9.2	2												
		TCR: 98%	-	_												
9.2	SHALE	– RQD: 68%	_													
		-		_												
9.6		-	-	-												
9.0		-	-	_												
			-												-	
10		 moderately weathered, 	grev -	1.525/			*						0			
		moderately weak in str		1.549 =98%												
$\left -\right $		 moderately fractured, - 70 mm limestone lay 	ar at 0.0													
10.4		- 70 mm nmestone layo - m	ci al 9.9 –	1												
		_ TCR: 98%		-												
$\left - \right $		_ RQD: 85%	-	-												
10.8	SHALE	_	-	-												
		-	-	1												
\vdash		_	_]			1									
11.2		_	-													
		-	-	-												
		- TCR: 100%		1.524/		+	+						0			
11.6		[–] RQD: 78%	_	1.524 =100%			+	-					_	$\left \right $		
	SHALE	-		1												
		_		1												

	ROCK	CORE LOG		ECT: QE						CORIN	G NO.:
				TION: <u>T</u> ATION: _	he Que	eens	way an `מח	d Fordhpuse TUM:			
	ONTRACTO			<u></u>				TYPE:			BH5
		ED: 14/09/2023 AT	·						/2023 A	AT:	
OF	RIENTATIO		INCL	INED:			BEARIN	NG:			
CC	DORDS. N:	E	-				LOGGE	R:			
				ERY	RQ	D			WE	ATHERING	
H	ROCK	DECODIDITION		RUN	(PERC	ENT)	L RES				DEMARKO
DEPTH	TYPE	DESCRIPTION		CORE RUN AND RECOVERY			PEF 0	DEFECT DESCRIPTIC	ON		REMARKS
				ANDC	0 ²⁵ 50	75 ₁₀	FRACTURES PER FOOT		EP	SW HW MW XW	
12		–	-		ĬĬĬ						
		moderately weathered,	grey							0	
-		moderately hard in stre					_				-
12.4		 moderately to slightly fractured, 	-								
	SHALE	- 50 mm limestone lay	er at								
		12.1 m	-								
12.8	3	 - 50 mm limestone laye - 12.3 m 	er at _				_				_
		- 50 mm limestone laye	er at _								
		12.5 m End of Rock Core at th						-			
13.2	2	Targeted Depth of 13 r									
		Below Ground Surface									
			_								
13.6	5	-	-								
		_	-								
		-	-								
14			_					-			
		_	-								
		-	-								
14.4		_	-								
		-	-								
		-	_								
14.8	5	-	-								
		_	-					-			
15.2	2	-	-								
13.2	†		_								
		_	-								
15.6	8	_	-								
.0.0		-	-								
		F	-]							
16		-	_								
		-	-								
		-	-								
16.4		-	-								
			_								
		_	-								
16.8	\$	F	-								
		F	-	1							

				R	ECO	RD C)F B(OREHOLE N	o. BH6	1 OF 1	METRI	C
PROJ	ECT NUMBER 11240	LOC	ATIC	DN _	The C	Queensv	way an	nd Fordhouse Boule	evard, Etobicoke, O	natrio		D BY RT
NAME	QEW + 427 Development	CLIE	ENT	137	0443 O	ntario Li	mited c	c/o RSM Canada	METHOD Soild St	em Augers		BY <u>RT</u>
DATU	Μ	DAT	E _2	2023.09	9.15 - 20	023.09.1	<u>5</u> NO	RTHING	EASTIN	G	_ CHECKED	BY <u>HH</u>
	SOIL PROFILE		s	SAMPL	ES	~	щ	DYNAMIC CONE P RESISTANCE PLO	ENETRATION &			
<u>ELEV</u> EPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 40 SHEAR STRENG O UNCONFINED O QUICK TRIAXI	60 80 100 GTH kPa			(%)
0.0 0.1	ASPHALTIC CONCRETE - 85 mm thick GRANULAR BASE/SUBBASE	.0	1A			X X				0		
0.5 0.8	(sand and gravel) - 380 mm thick FILL - silty sand, trace gravel,	×	1B	SS	13					o		
	dark brown, moist / FILL - clayey silt, brown, moist		2	SS	11					o		
1.5	SILT - occasionally inferred cobbles and boulders, brown, compact to very dense, moist		3	SS	24					0		
			4	SS	50/ 8 cm					0		
			5	SS	50/ \ <u>8 cm</u> /					o		
4.6	SHALE - completely weathered, gray		6	SS	50/ 5 cm	-				o		
			7.	SS	50/ <u>5 cm</u>					0		
			8	SS	50/ \ <u>5 cm</u> /					0		
9.2	End of Borehole at the Targeted Depth; Borehole Caved at 8.2 m and Water was at 8.2 m Below Existing Ground Surface Upon Completion of Drilling Period.		9	_ \$\$ _	50/ 5 cm							

 $+^3$, \times^3 : Numbers refer to O $^{3\%}$ STRAIN AT FAILURE Sensitivity

				R	ECO	RD O	F BC	DREF	IOLE	E No	. BH	7		1 (OF 1		ME	TRIC	
PROJ	IECT NUMBER _11240	LOC	ATIC	DN _	The C	ueensw	vay an	d Fordł	nouse	Boule	/ard, E	Itobico	ke, Or	natrio			ORIG	INATED	BY <u>RT</u>
IAME	QEW + 427 Development	CLIE	ENT	137	0443 O	ntario Lir	nited c/	o RSM	Canada	<u> </u>	IETHC)D_So	ild Ste	m Aug	jers		COM	PILED B	Y
	JM																		
	SOIL PROFILE			SAMPL															
LEV PTH	DESCRIPTION	STRAT PLOT	NUMBER	I TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA 0 UI • QI	0 4 R ST I NCONF JICK TI	0 6 RENG INED RIAXIA	0 8 TH kP + L ×	FIELD					. ,	Å UNIT WEIGHT	REMARKS & GRAIN SIZE DISTRIBUTIC (%)
<u>8.9</u> 0.1	Asphalt ASPHALTIC CONCRETE - 85						Ξ	2	0 4	0 6	8 0	80 10	00	2	20 4	10 E	50	kN/m ³	GR SA SI
0.1	(sand and gravel) - 380 mm	•	1A 1B	SS	13									0 0			107.5		
0.9	FILL - silty sand, trace organic, dark brown, moist FILT - sandy silt, grey, moist	\bigotimes	2A 2B	SS	12	-											127.5 208.9	P	
1.5	SILT - grey, compact to dense, moist		3	SS	18	-								0					
			4	SS	47	-								0					
	- occasionally inferred cobbles and boulders					-													
3.0	SHALE - completely weathered, gray		5	SS	50/ 14 cm									0					
6.6	Start of rock coring;		6	SS	50/ 10 cm									0					

	ROCK	CORE LOG		IECT: Q									0	COI	RIN	١G	G NO.:
PF			LOCA	ATION: <u>T</u> ATION [,]	he (Que	eer	ISW	ay an/ DA	d Fordhpuse FUM:							DU7
	DNTRACTO							D	_ D/(BH7
		-	:					D	ATE F	INISH: 14/09/2	2023		AT	:			
		ED: <u>14/09/2023</u> AT N: VERTICAL: □ E	. INCI	LINED: 🗆				B	EARIN OGGE	IG:							
	JORDS. N.	E	·	≻								W	EAT	HE	RIN	G	
				VER	(PI	RG		T)	S								
DEPTH	ROCK TYPE	DESCRIPTION		RE R RECO				• /	ER	DEFECT							REMARKS
				CORE RUN AND RECOVERY		25	75		P P	DESCRIPTIO	N		SW	ч	\		
		_ intense to moderately		< 1.524/	0 4	5050	<u>0' ~1</u>	00	FRACTURES PER FOOT			FF	ξM	<u>лvv'</u>	Ϋ́Χ\	N	
		weathered, grey, mode		1.524 =100%													
7.2		 weak in strength, inten fractured, 	sely -														
		– TCR: 100%	-	-			_				-	+	_	+			
		_ RQD: 85%	-														
7.6	SHALE	-	-														
		-	-														
8			_	-							-	_					
		-	-	-													
		_	-	1													
8.4		-	-				*								0		
		TCR: 95% – RQD: 77%	_	1.448/ 1.524													
		-	-	=95%													
8.8		_	-														
		-	-	-													
	SHALE	-	-														
9.2	SHALE	-	-														
		_	-	-													
9.6		_	-	-													
		_															
		-	-								Ī						
10		End of Rock Core at th		-							-						
		Targeted Depth of 9.9 Below Ground Surface		-													
10.4			-														
		-	-														
10.8		-	-														
10.0		-	-	-													
			_	-													
11.2		-	-	4													
		-	-														
		-	-	-													
11.6			_	-													
		_	-	-													
		+	-	-													

				R	ECO	RD O	F BC	REHO	LE No	o. B⊦	18		1 (DF 1	ME	TRIC	
PROJ	ECT NUMBER 11240	LOC	ATIC	DN _	The G	lueensv	vay and	d Fordhou	se Boule	evard, I	Etobicok	e, On	atrio		ORIG	INATED	BY RT
NAME	QEW + 427 Development	CLIE	INT	137	'0443 O	ntario Lir	nited c/	o RSM Can	ada	метно	DD Soil	d Ster	n Aug	ers	СОМ	PILED B	(
DATU	Μ	DAT	E _2	2023.09	9.15 - 20	023.09.1		RTHING _			EAS	TING	i		CHEC	CKED BY	HH
	SOIL PROFILE		s	SAMPL	ES	~	ш	DYNAMIC RESISTAN	CONE P	ENETR	ATION &						
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	1	40 STRENO NFINED	60 GTH kF + AL ×	80 100 Pa FIELD V		W _P	ER CO	LIQUID LIMIT W _L T (%)	N/m ³	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CI
<u>0.0</u> 0.1	GRAVEL - 85 mm thick	·															
0.5	GRANULAR BASE/SUBBASE (sand and gravel) - 380 mm thick FILL - sandy silt, trace clay,		1A 1B	SS	21								0 0				
	brown, moist	\bigotimes	2	SS	11								c				
1.5	SILT TILL - contaning shale	×															
	fragments, brown, dense to very dense, moist	• . •	3	SS	36								0				
		• . •	4	SS	50/ 14 cm								0				
3.0	SHALE - completely	• · ·	5	SS	50/								0				
0.0	weathered, gray, very dense, moist				\ <u>10 cm</u>												
			6		50/ \ <u>8 cm</u> /								0				
			7	SS	50/ <u>8 cm</u> /								0				
			8./	SS	50/ 5 cm/								0				
9.2	End of Borehole at the Targeted Depth; Borehole was Open and Dry Upon Completion of Drilling Period.)	\ \$\$	50/ \ <u>5 cm</u> /								0				

			R	ECO	RD O	F BC	RE	IOLE	E No	. BH	9		1 (DF 1		ME	TRIC	
PROJECT NUMBER 11240		ATIC	DN _	The C	ueensv	vay and	Ford	nouse	Boule	vard, E	tobico	ke, Or	natrio			ORIG	INATED	BY <u>RT</u>
NAME QEW + 427 Development	CLIE	ENT	137	0443 O	ntario Lir	nited c/	RSM	Canada	a_ M	ETHC	D So	ild Ste	m Aug	ers		COM	PILED B	r <u>R</u> T
DATUM	DAT	E _2	2023.09	.12 - 20	023.09.1	2 NOF	RTHIN	G			_ EA	STINC	G			CHEC	KED BY	<u> </u>
SOIL PROFILE		s	SAMPL	ES	Ř	Е	DYNA RESIS	MIC CC	DNE PE E PLOT		ATION @	•		- NATI	JRAL		L	REMARKS
ELEV DEPTH Asphalt	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA 0 UI • QI	0 4 R STF NCONF JICK TI	0 6 RENG	0 8 TH kP + - ×	80 10 FIELD					LIQUID LIMIT W _L T (%)		GRAIN SIZI DISTRIBUTIO (%) GR SA SI
ASPHALTIC CONCRETE - 75 0.1 GRANULAR BASE/SUBBASE (sand and gravel) - 530 mm		1A	SS	18									o					
0.6 thick 0.8 FILL - clay, trace gravel, trace sand, brown, moist FILL - sandy silt, trace gravel,	/	1B 2	SS	15	-								0 0					
trace clay, occasionally inferred cobbles and boulders, brown, moist																		
1.8 SILT TILL, grey, compact, 2.0 moist		3A 3B	SS	24									0 0					
End of Borehole at the Targeted Depth; Borehole was Open and Water was at 1.9 m Below Existing Ground Surface Upon Completion of Drilling Period.																		

				RE	CO	rd oi	F BO	REH	OLE	No.	BH1	10		1 (OF 1		ME	TRIC	
PRO	JECT NUMBER 11240	LOC	CATIO	ом _	The C	ueensv	vay and	Ford	nouse	Boule	/ard, E	tobico	ke, Or	natrio			ORIG	INATED	BY RT
NAM	E QEW + 427 Development	CLIE	ENT	137	0443 O	ntario Lir	nited c/	RSM	Canada	<u>a</u> M	IETHC	D So	ld Ste	m Aug	ers		сом	PILED B	r <u>RT</u>
DATI	JM	DAT	Е_	2023.09	.12 - 20	023.09.12	2 NOF	RTHIN	G			_ EA	STINC	G			CHEC	CKED BY	HH
	SOIL PROFILE		5	SAMPL	ES	~	щ	DYNA		DNE PE E PLOT	NETRA	TION 8)						
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA 0 UI • QI	NR STI	RENG INED RIAXIAI	0 8 TH kP + - ×	0 10 a FIELD ⁷ LAB VA	VANE				• •	VEIGHT	REMARKS & GRAIN SIZE DISTRIBUTIO (%)
<u>0.0</u> 0.1	Asphalt	·•• ·							4	0 0	0 0		0	2	4	ιο e	50	kN/m ³	GR SA SI (
0.5	GRANULAR BASE/SUBBASE (sand and gravel) - 380 mm (thick		1A 1B	SS	7									0 0					
0.8	FILL - silt, some clay, trace / gravel, trace sand, brown, / moist / FILL - sandy silt, some gravel,	\bigotimes	2	SS	32									0					
	occasionally inferred cobbles and boulders, brown, moist to	\otimes																	
	very moist	\bigotimes	3	SS	41									0					
2.0	End of Borehole at the Targeted Depth; Borehole was Open and Water was at 1.9 m Below Existing Ground Surface Upon Completion of Drilling Period.																		

				RE	CO	rd OI	F BO	REH	OLE	No.	BH1	11		1 (DF 1	ME	TRIC	
PRO	IECT NUMBER 11240	LOC	ATIC	DN _	The C	ueensv	vay and	l Fordh	nouse	Boule	/ard, E	tobico	ke, Or	atrio		ORIG	INATED	BY <u>RT</u>
NAME	E QEW + 427 Development	CLIE	ENT	137	0443 O	ntario Lir	nited c/o	RSM	Canada	<u> </u>	IETHC	D So	ild Ste	m Aug	ers	COM	PILED B	(
DATU	JM	DAT	Έ <u></u>	2023.09	.12 - 20	23.09.12	NOF	THING	G			_ EA	STING	;		CHEC	KED BY	НН
	SOIL PROFILE		5	SAMPL	ES	۲	щ	DYNA				ATION 8			NIAT'			DEMADIZO
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA O UN	0 4 R ST F NCONF	0 6 RENG INED RIAXIAI	0 8 TH kP +	a FIELD	VANE	PLASTIC LIMIT W _P I WAT	w C C C C C C C	LIQUID LIMIT W _L T (%)		REMARKS & GRAIN SIZE DISTRIBUTIC (%) GR SA SI (
<u>0.0</u> 0.1	ASPHALTIC CONCRETE - 75																	
0.5	GRANULAR BASE/SUBBASE (sand and gravel) - 380 mm thick	\otimes	1A 1B	SS	18									0 0				
0.8	 FILL - silty sand, trace gravel, / occasionally inferred cobbles / and boulders, brown, moist FILL - sandy silt, some clay, brown, moist 	\bigotimes	2	SS	18									0				
1.5	SILT - occasionally inferred cobbles and boulders, grey to brown, compact, moist		3	SS	26									ο				
2.0	End of Borehole at the Targeted Depth; Borehole was Open and Dry Upon Completion of Drilling Period.																	

				RE	CO	rd OI	F BO	REH	OLE	No.	BH1	12		1 (DF 1	ME	TRIC	
PROJ	JECT NUMBER 11240	LOC	ATIC	DN _	The Q	ueensv	vay and	l Fordh	nouse	Boule	/ard, E	tobico	ke, Or	natrio		ORIG	INATED	BY <u>RT</u>
NAME	E QEW + 427 Development	CLIE	INT	137	0443 O	ntario Lir	nited c/o	RSM	Canada	a_N	IETHC	D So	ild Ste	m Aug	ers	COM	PILED B	(
DATU	JM	DAT	E _2	2023.09	.15 - 20	23.09.1	5 NOF	THING	G			_ EA	STING	÷		CHEC	KED BY	НН
	SOIL PROFILE		s	SAMPL	ES	۲	щ	DYNA		DNE PE E PLOT	NETRA	TION 8	>		ALA T			DEMADIZO
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	2 SHEA O UN ● QU	0 4 R STI NCONF JICK T	RENG	0 8 TH kP +	0 10 a FIELD ⁷ LAB VA		PLASTIC LIMIT W _P I WAT	v C TER CC	LIQUID LIMIT WL T (%)		REMARKS & GRAIN SIZE DISTRIBUTIC (%) GR SA SI (
0.0 0.1	ASPHALTIC CONCRETE - 75	·• ·																
0.5	GRANULAR BASE/SUBBASE (sand and gravel) - 380 mm thick		1A 1B	SS	19									0 0				
0.8	FILL - silty sand, trace gravel, / containing brick fragments, / black, moist FILL - clayey silt, brown, moist	\bigotimes	2	SS	7									0				
1.5	cobbles and boulders, brown, compact, moist		3	SS	31									o				
2.0	End of Borehole at the Targeted Depth; Borehole was Open and Dry Upon Completion of Drilling Period.																	

APPENDIX D: SLUG TEST ANALYSIS GRAPHS

Figure 1: BH1 Figure 2: BH3 Figure 3: BH4A Figure 4: BH5

The Queensway and Fordhouse Blvd - Hydrogeological Investigation and CDA-REV 1

APPENDIX E: SOIL GRAIN SIZE ANALYSIS GRAPHS

Figure 1 (SOLA Engineering Inc., October 2023)

APPENDIX F: LABORATORY CERTIFICATES OF ANALYSIS

WT2330257

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	· WT2330257	Page	: 1 of 15
Client	: Hydrogeology Consulting Services	Laboratory	: ALS Environmental - Waterloo
Contact	: Chris Helmer	Account Manager	Emily Smith
Address	25 Water Street West	Address	: 60 Northland Road, Unit 1
	Elora ON Canada N0B 1S0		Waterloo, Ontario Canada N2V 2B8
Telephone	: 905 550 0969	Telephone	: +1 519 886 6910
Project	: Queensway-Etobicoke	Date Samples Received	: 20-Sep-2023 19:30
PO	:	Date Analysis Commenced	: 21-Sep-2023
C-O-C number	:	Issue Date	: 28-Sep-2023 17:36
Sampler	: Client		
Site	:		
Quote number	: Standing Offer 2022		
No. of samples received	: 2		
No. of samples analysed	: 2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario	
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario	
Nik Perkio	Inorganics Analyst	Metals, Waterloo, Ontario	
Rachel Cameron	Supervisor - Semi-Volatile Extractions	Organics, Waterloo, Ontario	
Sanja Risticevic	Department Manager - LCMS	LCMS, Waterloo, Ontario	
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario	
Walt Kippenhuck	Supervisor - Inorganic	Inorganics, Waterloo, Ontario	
Walt Kippenhuck	Supervisor - Inorganic	Metals, Waterloo, Ontario	
Zeba Patel		Microbiology, Waterloo, Ontario	

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
µg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
mg/L	milligrams per litre
pH units	pH units
>: greater than.	
<: less than.	
Red shading is applied w	here the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).
For drinking water sample	es, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Workorder Comments

RRR: DCM LOR increased due to the potential of laboratory contamination.

Qualifiers	
Qualifier	Description
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample
	tested.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
HSED	High sediment content in submitted water sample. Analysis could only proceed using
	aqueous fraction after decanting. Results may be biased low and may be
	inappropriate for regulatory or compliance purposes.
OWP	Organic water sample contained visible sediment (must be included as part of
	analysis). Measured concentrations of organic substances in water can be biased
	high due to presence of sediment.
RRR	Refer to report comments for issues regarding this analysis.
SP	Sample was preserved at the laboratory.
VOCHS	VOC analysis was conducted for a water sample that contained > 5% headspace.
	Results may be biased low.

Analytical Results

,,			Client sample ID	MW6					
Sub-Matrix: Water (Matrix: Water)		Si	ampling date/time	20-Sep-2023 11:00					
Analyte	Method/Lab	LOR	Unit	WT2330257-001		TORSUB SAN	TORSUB STM	 	
Physical Tests									
рН	E108/WT	0.10	pH units	8.06		6 - 11.5 pH units	6 - 9.5 pH units	 	
Solids, total suspended [TSS]	E160/WT	3.0	mg/L	36.6		350 mg/L	15 mg/L	 	
Anions and Nutrients									
Chloride	E235.CI/WT	0.50	mg/L	731	DLDS			 	
Fluoride	E235.F/WT	0.020	mg/L	2.13	DLDS	10 mg/L		 	
Kjeldahl nitrogen, total [TKN]	E318/WT	0.050	mg/L	3.15		100 mg/L		 	
Phosphorus, total	E372-U/WT	0.0020	mg/L	1950	DLHC	10 mg/L	0.4 mg/L	 	
Sulfate (as SO4)	E235.SO4/WT	0.30	mg/L	51.3	DLDS	1500 mg/L		 	
Cyanides									
Cyanide, strong acid dissociable (Total)	E333/WT	0.0020	mg/L	<0.0020		2 mg/L	0.02 mg/L	 	
Microbiological Tests									
Coliforms, Escherichia coli [E. coli]	E012A.EC/WT	1	CFU/100mL	Not Detected			200 CFU/100mL	 	
Total Metals									
Aluminum, total	E420/WT	0.0030	mg/L	7.84	DLHC	50 mg/L		 	
Antimony, total	E420/WT	0.00010	mg/L	0.00422	DLHC	5 mg/L		 	
Arsenic, total	E420/WT	0.00010	mg/L	0.0131	DLHC	1 mg/L	0.02 mg/L	 	
Cadmium, total	E420/WT	0.0000050	mg/L	<0.0000500	DLHC	0.7 mg/L	0.008 mg/L	 	
Chromium, total	E420/WT	0.00050	mg/L	0.0124	DLHC	4 mg/L	0.08 mg/L	 	
Cobalt, total	E420/WT	0.00010	mg/L	0.00689	DLHC	5 mg/L		 	
Copper, total	E420/WT	0.00050	mg/L	0.0184	DLHC	2 mg/L	0.04 mg/L	 	
Lead, total	E420/WT	0.000050	mg/L	0.00731	DLHC	1 mg/L	0.12 mg/L	 	
Manganese, total	E420/WT	0.00010	mg/L	0.357	DLHC	5 mg/L	0.05 mg/L	 	
Mercury, total	E508/WT	0.0000050	mg/L	0.0000143		0.01 mg/L	0.0004 mg/L	 	
Molybdenum, total	E420/WT	0.000050	mg/L	0.0318	DLHC	5 mg/L		 	
Nickel, total	E420/WT	0.00050	mg/L	0.0158	DLHC	2 mg/L	0.08 mg/L	 	
Selenium, total	E420/WT	0.000050	mg/L	0.000694	DLHC	1 mg/L	0.02 mg/L	 	
Silver, total	E420/WT	0.000010	mg/L	<0.000100	DLHC	5 mg/L	0.12 mg/L	 	
Tin, total	E420/WT	0.00010	mg/L	0.00655	DLHC	5 mg/L		 	
Titanium, total	E420/WT	0.00030	mg/L	0.0729	DLHC	5 mg/L		 	

Page	:	5 of 15
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	1	Queensway-Etobicoke

Method/Lab

LOR

Unit

Analyte

Tin, dissolved

Titanium, dissolved

E421/WT

E421/WT

0.00010

0.00030

mg/L

mg/L

(Continued) STM SAN **Total Metals - Continued** E420/WT 0.0462 DLHC Zinc, total 0.0030 mg/L 2 mg/L 0.04 mg/L ------------**Dissolved Metals** DLHC 0.0244 Aluminum, dissolved E421/WT 0.0010 50 mg/L -----mg/L ---------DLHC 0.00440 Antimony, dissolved E421/WT 0.00010 mg/L 5 mg/L ---------------Arsenic, dissolved E421/WT 0.00986 DLHC 1 mg/L 0.02 mg/L 0.00010 mg/L ------------DLHC Barium. dissolved E421/WT 0.00010 0.116 mg/L ------------------Beryllium, dissolved E421/WT < 0.000200 DLHC 0.000020 mg/L ------------------Bismuth. dissolved E421/WT < 0.000500 DLHC 0.000050 mg/L ------------------Boron, dissolved E421/WT 2.26 DLHC 0.010 mg/L ------------------< 0.0000500 DLHC Cadmium. dissolved E421/WT 0.7 mg/L 0.008 mg/L 0.0000050 mg/L ------------DLHC Calcium, dissolved E421/WT 0.050 mg/L 32.9 ------------------E421/WT DLHC 0.000264 Cesium, dissolved 0.000010 mg/L ------------------E421/WT < 0.00500 DLHC Chromium, dissolved 0.08 mg/L 0.00050 mg/L 4 mg/L ------------DLHC Cobalt, dissolved E421/WT 0.00010 < 0.00100 5 mg/L --mg/L ------------Copper, dissolved E421/WT < 0.00200 DLHC 0.00020 2 mg/L 0.04 mg/L mg/L ------------DLHC Iron, dissolved E421/WT < 0.100 0.010 --------mg/L ---------Lead. dissolved < 0.000500 DLHC 1 mg/L 0.12 mg/L E421/WT 0.000050 mg/L ------------Lithium, dissolved E421/WT 0.133 DLHC 0.0010 mg/L ------------------DLHC Magnesium, dissolved E421/WT 0.0050 8.16 --------mg/L ---------Manganese, dissolved E421/WT 0.0267 DLHC 0.00010 mg/L 5 mg/L 0.05 mg/L -----------Molybdenum, dissolved E421/WT 0.0336 DLHC 0.000050 mg/L 5 mg/L ---------------Nickel, dissolved E421/WT < 0.00500 DLHC 0.08 mg/L 0.00050 mg/L 2 mg/L ------------< 0.500 DLHC Phosphorus, dissolved E421/WT 10 mg/L 0.050 mg/L 0.4 mg/L ------------DLHC Potassium, dissolved E421/WT 45.2 0.050 mg/L ------------------0.0242 DLHC Rubidium, dissolved E421/WT 0.00020 mg/L ------------------DLHC Selenium, dissolved E421/WT 0.000716 0.000050 mg/L 1 mg/L 0.02 mg/L ------------2.54 DLHC Silicon, dissolved E421/WT 0.050 mg/L ------------------E421/WT < 0.000100 DLHC 0.12 mg/L Silver, dissolved 0.000010 5 mg/L mg/L ------------DLHC Sodium, dissolved E421/WT 477 0.050 mg/L -----------------DLHC Strontium, dissolved E421/WT 0.00020 mg/L 0.999 ------------------Sulfur, dissolved E421/WT 18.5 DLHC 0.50 mg/L -----------------Tellurium. dissolved E421/WT < 0.00200 DLHC 0.00020 mg/L ------------------DLHC Thallium, dissolved E421/WT < 0.000100 0.000010 mg/L ------------------Thorium. dissolved E421/WT 0.00010 < 0.00100 DLHC -----mg/L ------------

DLHC

DLHC

5 mg/L

5 mg/L

0.00236

< 0.00300

WT2330257-001

TORSUB

TORSUB

Page	1	6 of 15
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	÷	Queensway-Etobicoke

Analyte	Method/Lab	LOR	Unit	WT2330257-001 (Continued)	TORSUB SAN	TORSUB STM	 	
Dissolved Metals - Continued								
Tungsten, dissolved	E421/WT	0.00010	mg/L	0.00128 DLHC			 	
Uranium, dissolved	E421/WT	0.000010	mg/L	0.00143 DLHC			 	
Vanadium, dissolved	E421/WT	0.00050	mg/L	<0.00500 DLHC			 	
Zinc, dissolved	E421/WT	0.0010	mg/L	<0.0100 DLHC	2 mg/L	0.04 mg/L	 	
Zirconium, dissolved	E421/WT	0.00030	mg/L	<0.00300 DLHC			 	
Dissolved metals filtration location	EP421/WT		-	Laboratory			 	
Speciated Metals								
Chromium, hexavalent [Cr VI], total	E532/WT	0.00050	mg/L	<0.00050	2 mg/L	0.04 mg/L	 	
Aggregate Organics								
Biochemical oxygen demand [BOD]	E550/WT	2.0	mg/L	<3.0 BODL	300 mg/L	15 mg/L	 	 -
Oil & grease (gravimetric)	E567/WT	5.0	mg/L	<5.0			 	
Oil & grease, animal/vegetable (gravimetric)	EC567A.SG/WT	5.0	mg/L	<5.0	150 mg/L		 	
Oil & grease, mineral (gravimetric)	E567SG/WT	5.0	mg/L	<5.0	15 mg/L		 	
Phenols, total (4AAP)	E562/WT	0.0010	mg/L	<0.0010	1 mg/L	0.008 mg/L	 	
Volatile Organic Compound	s							
Benzene	E611D/WT	0.50	µg/L	<0.50	10 µg/L	2 µg/L	 	
Chloroform	E611D/WT	0.50	μg/L	<0.50	40 µg/L	2 µg/L	 	
Dichlorobenzene, 1,2-	E611D/WT	0.50	µg/L	<0.50	50 µg/L	5.6 µg/L	 	
Dichlorobenzene, 1,4-	E611D/WT	0.50	µg/L	<0.50	80 µg/L	6.8 µg/L	 	
Dichloroethylene, cis-1,2-	E611D/WT	0.50	µg/L	<0.50	4000 µg/L	5.6 µg/L	 	
Dichloromethane	E611D/WT	1.0	µg/L	<3.0 RRR	2000 µg/L	5.2 µg/L	 	
Dichloropropylene, trans-1,3-	E611D/WT	0.30	µg/L	<0.30	140 µg/L	5.6 µg/L	 	
Ethylbenzene	E611D/WT	0.50	µg/L	<0.50	160 µg/L	2 µg/L	 	
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	µg/L	<0.50	1400 µg/L	17 µg/L	 	
Tetrachloroethylene	E611D/WT	0.50	µg/L	<0.50	1000 µg/L	4.4 µg/L	 	
Toluene	E611D/WT	0.50	µg/L	<0.50	16 µg/L	2 µg/L	 	
Trichloroethylene	E611D/WT	0.50	µg/L	<0.50	400 µg/L	7.6 µg/L	 	
Xylene, m+p-	E611D/WT	0.40	µg/L	<0.40			 	
Xylene, o-	E611D/WT	0.30	µg/L	<0.30			 	
Xylenes, total	E611D/WT	0.50	µg/L	<0.50	1400 µg/L	4.4 µg/L	 	
Volatile Organic Compound	s Surrogates							
Bromofluorobenzene, 4-	E611D/WT	1.0	%	97.4			 	

Page	:	7 of 15
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

		1		WT2330257-001	TORSUB	TORSUB	 	
Valatile Owners's Osmus sunda				(Continued)	SAN	STM		
Volatile Organic Compounds				98.5				1
	E611D/WT	1.0	%	98.5			 	
Polycyclic Aromatic Hydroca				0.000040				
	E641A-L/WT	0.000010	mg/L	<0.000010			 	
()	E641A-L/WT	0.000010	mg/L	<0.000010			 	
(),)	E641A-L/WT	0.0000050	mg/L	<0.000050			 	
	E641A-L/WT	0.000010	mg/L	<0.000010			 	
(),)	E641A-L/WT	0.000010	mg/L	<0.000010			 	
	E641A-L/WT	0.000010	mg/L	<0.000010			 	
Benzo(k)fluoranthene	E641A-L/WT	0.000010	mg/L	<0.000010			 	
Chrysene	E641A-L/WT	0.000010	mg/L	<0.000010			 	
Dibenz(a,h)acridine	E642D/WT	0.000050	mg/L	<0.000050			 	
Dibenz(a,h)anthracene	E641A-L/WT	0.0000050	mg/L	<0.000050			 	
Dibenz(a,j)acridine	E642D/WT	0.000050	mg/L	<0.000050			 	
Dibenzo(a,i)pyrene	E642D/WT	0.000050	mg/L	<0.000050			 	
Dibenzo(c,g)carbazole, 7H-	E642D/WT	0.000050	mg/L	<0.000050			 	
Dinitropyrene, 1,3-	E642D/WT	0.0010	mg/L	<0.0010			 	
Dinitropyrene, 1,6-	E642D/WT	0.0010	mg/L	<0.0010			 	
Dinitropyrene, 1,8-	E642D/WT	0.0010	mg/L	<0.0010			 	
Fluoranthene	E641A-L/WT	0.000010	mg/L	0.000027			 	
Indeno(1,2,3-c,d)pyrene	E641A-L/WT	0.000010	mg/L	<0.000010			 	
Methylcholanthrene, 3-	E642D/WT	0.000050	mg/L	<0.000050			 	
Perylene	E641A-L/WT	0.000010	mg/L	<0.000010			 	
Phenanthrene	E641A-L/WT	0.000010	mg/L	0.000073			 	
Pyrene	E641A-L/WT	0.000010	mg/L	0.000063			 	
PAHs, total (ON Sewer Use)	EC640A/WT	0.00175	mg/L	<0.00175	0.005 mg/L	0.002 mg/L	 	
Chrysene-d12	E641A-L/WT	0.1	%	126			 	
Naphthalene-d8	E641A-L/WT	0.1	%	99.7			 	
Phenanthrene-d10	E641A-L/WT	0.1	%	113			 	
Terphenyl-d14, p-	E642D/WT	0.1	%	82.5			 	
Phthalate Esters								
bis(2-Ethylhexyl) phthalate	E655F/WT	2.0	µg/L	<2.0	12 µg/L	8.8 µg/L	 	
[DEHP]								
Di-n-butyl phthalate	E655F/WT	1.0	µg/L	1.6	80 µg/L	15 µg/L	 	
Semi-Volatile Organics								
Dichlorobenzidine, 3,3'-	E655F/WT	0.40	µg/L	<0.40	2 µg/L	0.8 µg/L	 	
Semi-Volatile Organics Surro	ogates							
Page	:	8 of 15						
------------	---	----------------------------------						
Work Order	:	WT2330257						
Client	:	Hydrogeology Consulting Services						
Project		Queenswav-Etobicoke						

Analyte	Method/Lab	LOR	Unit	WT2330257-001 (Continued)	TORSUB SAN	TORSUB STM	 	
Semi-Volatile Organics Sur	rogates - Continued	t						
Fluorobiphenyl, 2-	E655F/WT	1.0	%	91.6			 	
Terphenyl-d14, p-	E655F/WT	1.0	%	80.2			 	
Chlorinated Phenolics								
Pentachlorophenol [PCP]	E655F/WT	0.50	µg/L	<0.50	5 µg/L	2 µg/L	 	
Tribromophenol, 2,4,6-	E655F/WT	0.20	%	162 RRR			 	
Nonylphenols								
Nonylphenol diethoxylates [NP2EO]	E749B/WT	0.10	µg/L	<0.10			 	
Nonylphenol ethoxylates, total	E749B/WT	2.0	µg/L	<2.0	200 µg/L	10 µg/L	 	
Nonylphenol monoethoxylates [NP1EO]	E749B/WT	2.0	µg/L	<2.0			 	
Nonylphenols [NP]	E749A/WT	1.0	µg/L	<1.0	20 µg/L	1 µg/L	 	
Polychlorinated Biphenyls								
Aroclor 1016	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1221	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1232	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1242	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1248	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1254	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1260	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1262	E687/WT	0.020	µg/L	<0.020			 	
Aroclor 1268	E687/WT	0.020	µg/L	<0.020			 	
Polychlorinated biphenyls [PCBs], total	E687/WT	0.060	µg/L	<0.060	1 μg/L	0.4 µg/L	 	
Decachlorobiphenyl	E687/WT	0.1	%	122			 	
Tetrachloro-m-xylene	E687/WT	0.1	%	89.4			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
MW6	Water	Phosphorus, total		TORSUB	SAN	1950 mg/L	10 mg/L
	Water	Solids, total suspended [TSS]		TORSUB	STM	36.6 mg/L	15 mg/L
	Water	Phosphorus, total		TORSUB	STM	1950 mg/L	0.4 mg/L
	Water	Manganese, total		TORSUB	STM	0.357 mg/L	0.05 mg/L
	Water	Zinc, total		TORSUB	STM	0.0462 mg/L	0.04 mg/L
	Water	Phosphorus, dissolved		TORSUB	STM	<0.500	0.4 mg/L

Sample Comments

Sample	Client Id	Comment	
WT2330257-001	MW6	RRR; Surrogate result is outside of ALS control limits; Associated non-detect results are considered reliable.	
Key:			
TORSUB		Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016)	
SAN		Toronto Sanitary Discharge Sewer By-Law	
STM		Toronto Storm Discharge Sewer By-Law	

Analytical Results

			Client sample ID	MW5					
Sub-Matrix: Water (Matrix: Water)		Si	ampling date/time	20-Sep-2023 14:00					
Analyte	Method/Lab	LOR	Unit	WT2330257-00)2	TORSUB SAN	TORSUB STM	 	
Physical Tests									
рН	E108/WT	0.10	pH units	8.62		6 - 11.5 pH units	6 - 9.5 pH units	 	
Solids, total suspended [TSS]	E160/WT	3.0	mg/L	2690	DLHC	350 mg/L	15 mg/L	 	
Anions and Nutrients									
Chloride	E235.CI/WT	0.50	mg/L	190	DLM			 	
Fluoride	E235.F/WT	0.020	mg/L	2.97	DLM	10 mg/L		 	
Kjeldahl nitrogen, total [TKN]	E318/WT	0.050	mg/L	70.3	DLHC DLM	100 mg/L		 	
Phosphorus, total	E372-U/WT	0.0020	mg/L	28.1	DLM	10 mg/L	0.4 mg/L	 	
Sulfate (as SO4)	E235.SO4/WT	0.30	mg/L	134	DLM	1500 mg/L		 	
Cyanides									
Cyanide, strong acid dissociable (Total)	E333/WT	0.0020	mg/L	<0.0020		2 mg/L	0.02 mg/L	 	
Microbiological Tests									
Coliforms, Escherichia coli [E. coli]	E012A.EC/WT	1	CFU/100mL	Not Detected	DLM		200 CFU/100mL	 	
Total Metals									
Aluminum, total	E420/WT	0.0030	mg/L	298	DLHC	50 mg/L		 	
Antimony, total	E420/WT	0.00010	mg/L	<0.0100	DLHC	5 mg/L		 	
Arsenic, total	E420/WT	0.00010	mg/L	0.0605	DLHC	1 mg/L	0.02 mg/L	 	
Cadmium, total	E420/WT	0.0000050	mg/L	<0.000500	DLHC	0.7 mg/L	0.008 mg/L	 	
Chromium, total	E420/WT	0.00050	mg/L	0.434	DLHC	4 mg/L	0.08 mg/L	 	
Cobalt, total	E420/WT	0.00010	mg/L	0.229	DLHC	5 mg/L		 	
Copper, total	E420/WT	0.00050	mg/L	0.327	DLHC	2 mg/L	0.04 mg/L	 	
Lead, total	E420/WT	0.000050	mg/L	0.0489	DLHC	1 mg/L	0.12 mg/L	 	
Manganese, total	E420/WT	0.00010	mg/L	7.34	DLHC	5 mg/L	0.05 mg/L	 	
Mercury, total	E508/WT	0.0000050	mg/L	<0.0000500	DLM HSED	0.01 mg/L	0.0004 mg/L	 	
Molybdenum, total	E420/WT	0.000050	mg/L	0.0931	DLHC	5 mg/L		 	
Nickel, total	E420/WT	0.00050	mg/L	0.508	DLHC	2 mg/L	0.08 mg/L	 	
Selenium, total	E420/WT	0.000050	mg/L	<0.00500	DLHC	1 mg/L	0.02 mg/L	 	
Silver, total	E420/WT	0.000010	mg/L	0.0188	DLHC	5 mg/L	0.12 mg/L	 	
Tin, total	E420/WT	0.00010	mg/L	<0.0100	DLHC	5 mg/L		 	
Titanium, total	E420/WT	0.00030	mg/L	0.246	DLHC	5 mg/L		 	

Page	1	11 of 15
Work Orde	er :	WT2330257
Client	:	Hydrogeology Consulting Services
Project		Queensway Etabicake

Project Queensway-Etobicoke

Analyte	Method/Lab	LOR	Unit	WT2330257-002 (Continued)		TORSUB SAN	TORSUB STM				
Total Metals - Continued	Total Metals - Continued										
Zinc, total	E420/WT	0.0030	mg/L	1.02	DLHC	2 mg/L	0.04 mg/L				
Dissolved Metals	Dissolved Metals										
Aluminum, dissolved	E421/WT	0.0010	mg/L	0.0836	DLHC	50 mg/L					
Antimony, dissolved	E421/WT	0.00010	mg/L	0.00594	DLHC	5 mg/L					
Arsenic, dissolved	E421/WT	0.00010	mg/L	0.0138	DLHC	1 mg/L	0.02 mg/L				
Barium, dissolved	E421/WT	0.00010	mg/L	0.0185	DLHC						
Beryllium, dissolved	E421/WT	0.000020	mg/L	<0.000200	DLHC						
Bismuth, dissolved	E421/WT	0.000050	mg/L	<0.000500	DLHC						
Boron, dissolved	E421/WT	0.010	mg/L	1.31	DLHC						
Cadmium, dissolved	E421/WT	0.0000050	mg/L	<0.0000500	DLHC	0.7 mg/L	0.008 mg/L				
Calcium, dissolved	E421/WT	0.050	mg/L	10.3	DLHC						
Cesium, dissolved	E421/WT	0.000010	mg/L	0.000183	DLHC						
Chromium, dissolved	E421/WT	0.00050	mg/L	<0.00500	DLHC	4 mg/L	0.08 mg/L				
Cobalt, dissolved	E421/WT	0.00010	mg/L	0.00243	DLHC	5 mg/L					
Copper, dissolved	E421/WT	0.00020	mg/L	0.00504	DLHC	2 mg/L	0.04 mg/L				
Iron, dissolved	E421/WT	0.010	mg/L	<0.100	DLHC						
Lead, dissolved	E421/WT	0.000050	mg/L	<0.000500	DLHC	1 mg/L	0.12 mg/L				
Lithium, dissolved	E421/WT	0.0010	mg/L	0.0509	DLHC						
Magnesium, dissolved	E421/WT	0.0050	mg/L	3.22	DLHC						
Manganese, dissolved	E421/WT	0.00010	mg/L	0.0168	DLHC	5 mg/L	0.05 mg/L				
Molybdenum, dissolved	E421/WT	0.000050	mg/L	0.206 D	LHC DTC	5 mg/L					
Nickel, dissolved	E421/WT	0.00050	mg/L	<0.00500	DLHC	2 mg/L	0.08 mg/L				
Phosphorus, dissolved	E421/WT	0.050	mg/L	<0.500	DLHC	10 mg/L	0.4 mg/L				
Potassium, dissolved	E421/WT	0.050	mg/L	26.9	DLHC						
Rubidium, dissolved	E421/WT	0.00020	mg/L	0.0184	DLHC						
Selenium, dissolved	E421/WT	0.000050	mg/L	0.00451	DLHC	1 mg/L	0.02 mg/L				
Silicon, dissolved	E421/WT	0.050	mg/L	5.10	DLHC						
Silver, dissolved	E421/WT	0.000010	mg/L	<0.000100	DLHC	5 mg/L	0.12 mg/L				
Sodium, dissolved	E421/WT	0.050	mg/L	248	DLHC						
Strontium, dissolved	E421/WT	0.00020	mg/L	0.264	DLHC						
Sulfur, dissolved	E421/WT	0.50	mg/L	50.7	DLHC						
Tellurium, dissolved	E421/WT	0.00020	mg/L	<0.00200	DLHC						
Thallium, dissolved	E421/WT	0.000010	mg/L	<0.000100	DLHC						
Thorium, dissolved	E421/WT	0.00010	mg/L	<0.00100	DLHC						
Tin, dissolved	E421/WT	0.00010	mg/L	<0.00100	DLHC	5 mg/L					
Titanium, dissolved	E421/WT	0.00030	mg/L	<0.00300	DLHC	5 mg/L					

Page	1	12 of 15
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project		Queensway-Etobicoke

Analyte	Method/Lab	LOR	Unit	WT2330257-002 (Continued)	TORSUB SAN	TORSUB STM			
Dissolved Metals - Continued									
Tungsten, dissolved	E421/WT	0.00010	mg/L	0.411 DLHC					
Uranium, dissolved	E421/WT	0.000010	mg/L	0.00356 DLHC					
Vanadium, dissolved	E421/WT	0.00050	mg/L	0.00520 DLHC					
Zinc, dissolved	E421/WT	0.0010	mg/L	<0.0100 DLHC	2 mg/L	0.04 mg/L			
Zirconium, dissolved	E421/WT	0.00030	mg/L	<0.00300 DLHC					
Dissolved metals filtration	EP421/WT		-	Laboratory					
location									
Speciated Metals									
Chromium, hexavalent [Cr VI],	E532/WT	0.00050	mg/L	<0.00050	2 mg/L	0.04 mg/L			
total									
Aggregate Organics									
Biochemical oxygen demand [BOD]	E550/WT	2.0	mg/L	4.6	300 mg/L	15 mg/L			
Oil & grease (gravimetric)	E567/WT	5.0	mg/L	<5.0					
Oil & grease, animal/vegetable	EC567A.SG/WT	5.0	mg/L	<5.0	150 mg/L				
(gravimetric)									
Oil & grease, mineral (gravimetric)	E567SG/WT	5.0	mg/L	<5.0	15 mg/L				
Phenols, total (4AAP)	E562/WT	0.0010	mg/L	<0.0050 DLM SP	1 mg/L	0.008 mg/L			
Volatile Organic Compounds	5								
Benzene	E611D/WT	0.50	µg/L	5.30 OWP VOCHS	10 µg/L	2 µg/L			
Chloroform	E611D/WT	0.50	µg/L	0.86 OWP VOCHS	40 µg/L	2 µg/L			
Dichlorobenzene, 1,2-	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	50 µg/L	5.6 µg/L			
Dichlorobenzene, 1,4-	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	80 µg/L	6.8 µg/L			
Dichloroethylene, cis-1,2-	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	4000 µg/L	5.6 µg/L			
Dichloromethane	E611D/WT	1.0	µg/L	<3.50WP RRR VOCHS	2000 µg/L	5.2 µg/L			
Dichloropropylene, trans-1,3-	E611D/WT	0.30	µg/L	<0.30 OWP VOCHS	140 µg/L	5.6 µg/L			
Ethylbenzene	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	160 µg/L	2 µg/L			
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	1400 µg/L	17 µg/L			
Tetrachloroethylene	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	1000 µg/L	4.4 µg/L			
Toluene	E611D/WT	0.50	µg/L	0.89 OWP VOCHS	16 µg/L	2 µg/L			
Trichloroethylene	E611D/WT	0.50	µg/L	<0.50 OWP VOCHS	400 µg/L	7.6 μg/L			
Xylene, m+p-	E611D/WT	0.40	µg/L	<0.40 OWP VOCHS					
Xylene, o-	E611D/WT	0.30	µg/L	<0.30 OWP VOCHS					
Xylenes, total	E611D/WT	0.50	µg/L	<0.50	1400 µg/L	4.4 µg/L			
Volatile Organic Compounds	s Surrogates								
Bromofluorobenzene, 4-	E611D/WT	1.0	%	93.2					

Page	:	13 of 15
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
D 1 1		

Project : Queensway-Etobicoke

Analyte	Method/Lab	LOR	Unit	WT2330257-002 (Continued)	TORSI				-	
Volatile Organic Compounds Surrogates - Continued										
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.8						
Polycyclic Aromatic Hydrod	arbons									
Anthracene	E641A-L/WT	0.000010	mg/L	<0.000036	DLM					
Benz(a)anthracene	E641A-L/WT	0.000010	mg/L	<0.000010						
Benzo(a)pyrene	E641A-L/WT	0.0000050	mg/L	<0.000050						
Benzo(b+j)fluoranthene	E641A-L/WT	0.000010	mg/L	<0.000010						
Benzo(e)pyrene	E641A-L/WT	0.000010	mg/L	<0.000010						
Benzo(g,h,i)perylene	E641A-L/WT	0.000010	mg/L	<0.000010						
Benzo(k)fluoranthene	E641A-L/WT	0.000010	mg/L	<0.000010						
Chrysene	E641A-L/WT	0.000010	mg/L	0.000026						
Dibenz(a,h)acridine	E642D/WT	0.000050	mg/L	<0.000075	RRR					
Dibenz(a,h)anthracene	E641A-L/WT	0.0000050	mg/L	<0.000050						
Dibenz(a,j)acridine	E642D/WT	0.000050	mg/L	<0.000075	RRR					
Dibenzo(a,i)pyrene	E642D/WT	0.000050	mg/L	<0.000075	RRR					
Dibenzo(c,g)carbazole, 7H-	E642D/WT	0.000050	mg/L	<0.000075	RRR					
Dinitropyrene, 1,3-	E642D/WT	0.0010	mg/L	<0.0015	RRR					
Dinitropyrene, 1,6-	E642D/WT	0.0010	mg/L	<0.0015	RRR					
Dinitropyrene, 1,8-	E642D/WT	0.0010	mg/L	<0.0015	RRR					
Fluoranthene	E641A-L/WT	0.000010	mg/L	0.000044						
Indeno(1,2,3-c,d)pyrene	E641A-L/WT	0.000010	mg/L	<0.000010						
Methylcholanthrene, 3-	E642D/WT	0.000050	mg/L	<0.000075	RRR					
Perylene	E641A-L/WT	0.000010	mg/L	<0.000010						
Phenanthrene	E641A-L/WT	0.000010	mg/L	0.000702						
Pyrene	E641A-L/WT	0.000010	mg/L	0.000093						
PAHs, total (ON Sewer Use)	EC640A/WT	0.00175	mg/L	<0.00260	0.005 m	ig/L 0.002 mg/L				
Chrysene-d12	E641A-L/WT	0.1	%	115						
Naphthalene-d8	E641A-L/WT	0.1	%	101						
Phenanthrene-d10	E641A-L/WT	0.1	%	90.1						
Terphenyl-d14, p-	E642D/WT	0.1	%	29.6	RRR					
Phthalate Esters										
bis(2-Ethylhexyl) phthalate [DEHP]	E655F/WT	2.0	µg/L	<4.0	RRR 12 µg	′L 8.8 μg/L				
Di-n-butyl phthalate	E655F/WT	1.0	μg/L	<6.0	RRR 80 µg	′L 15 μg/L				
Semi-Volatile Organics										
Dichlorobenzidine, 3,3'-	E655F/WT	0.40	μg/L	<0.40	2 µg/	L 0.8 µg/L				
Semi-Volatile Organics Sur	rogates									

Page	:	14 of 15
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analyte Method/Lab LOR Unit WT2330257-002 TORSUB TORSUB ------------(Continued) STM SAN Semi-Volatile Organics Surrogates - Continued Fluorobiphenyl, 2-E655F/WT 64.6 % 1.0 ------------------Terphenyl-d14, p-E655F/WT % 25.4 RRR 1.0 ------------------**Chlorinated Phenolics** Pentachlorophenol [PCP] E655F/WT < 0.50 0.50 µg/L 5 µg/L 2 µg/L ------------Tribromophenol, 2,4,6-E655F/WT % 99.5 ---0.20 ---------------Nonylphenols E749B/WT < 0.10 Nonylphenol diethoxylates 0.10 µg/L ------------------[NP2EO] Nonylphenol ethoxylates, total E749B/WT <2.0 2.0 µg/L 200 µg/L 10 µg/L ------------E749B/WT <2.0 2.0 ---Nonylphenol monoethoxylates µg/L ---------------[NP1EO] Nonylphenols [NP] E749A/WT 1.0 <1.0 20 µg/L 1 µg/L --µg/L ---------**Polychlorinated Biphenyls** E687/WT DLM Aroclor 1016 < 0.200 0.020 µg/L ------------------DLM Aroclor 1221 E687/WT < 0.200 0.020 µg/L ------------------DLM Aroclor 1232 E687/WT < 0.200 0.020 µg/L ------------------DLM Aroclor 1242 E687/WT 0.020 < 0.200 µg/L ------------------DLM Aroclor 1248 E687/WT 0.020 µg/L < 0.200 ------------------Aroclor 1254 DLM E687/WT < 0.200 0.020 µg/L ------------------Aroclor 1260 E687/WT 0.020 < 0.200 DLM µg/L ------------------Aroclor 1262 E687/WT 0.020 < 0.200 DLM µg/L ------------------Aroclor 1268 E687/WT < 0.200 DLM 0.020 µg/L ------------------< 0.600 DLM E687/WT 0.4 µg/L Polychlorinated biphenyls 0.060 µg/L 1 µg/L ------------[PCBs], total Decachlorobiphenyl E687/WT 79.4 0.1 % ------------------Tetrachloro-m-xylene E687/WT % 65.2 0.1 ------------------

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
MW5	Water	Solids, total suspended [TSS]		TORSUB	SAN	2690 mg/L	350 mg/L
	Water	Phosphorus, total		TORSUB	SAN	28.1 mg/L	10 mg/L
	Water	Aluminum, total		TORSUB	SAN	298 mg/L	50 mg/L
	Water	Manganese, total		TORSUB	SAN	7.34 mg/L	5 mg/L
	Water	Solids, total suspended [TSS]		TORSUB	STM	2690 mg/L	15 mg/L
	Water	Phosphorus, total		TORSUB	STM	28.1 mg/L	0.4 mg/L
	Water	Arsenic, total		TORSUB	STM	0.0605 mg/L	0.02 mg/L
	Water	Chromium, total		TORSUB	STM	0.434 mg/L	0.08 mg/L
	Water	Copper, total		TORSUB	STM	0.327 mg/L	0.04 mg/L
	Water	Manganese, total		TORSUB	STM	7.34 mg/L	0.05 mg/L
	Water	Nickel, total		TORSUB	STM	0.508 mg/L	0.08 mg/L
	Water	Zinc, total		TORSUB	STM	1.02 mg/L	0.04 mg/L
	Water	Phosphorus, dissolved		TORSUB	STM	<0.500	0.4 mg/L
	Water	Benzene		TORSUB	STM	5.30 µg/L	2 µg/L
	Water	PAHs, total (ON Sewer Use)		TORSUB	STM	<0.00260	0.002 mg/L
	Water	Polychlorinated biphenyls [PCBs], total		TORSUB	STM	<0.600	0.4 µg/L

Sample Comments

Sample	Client Id	Comment	
WT2330257-002	MW5	RRR: Surrogate recovery is outside ALS DQO. Detection limits for affected compounds have been raised accordingly.	
		RRR; Surrogate result is outside of ALS control limits, Reporting limits have been raised accordingly.	
Key:			
TORSUB		Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016)	
SAN		Toronto Sanitary Discharge Sewer By-Law	
STM		Toronto Storm Discharge Sewer By-Law	

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	WT2330257	Page	: 1 of 17
Client	Hydrogeology Consulting Services	Laboratory	: ALS Environmental - Waterloo
Contact	: Chris Helmer	Account Manager	: Emily Smith
Address	25 Water Street West	Address	: 60 Northland Road, Unit 1
	Elora ON Canada N0B 1S0		Waterloo, Ontario Canada N2V 2B8
Telephone	: 905 550 0969	Telephone	: +1 519 886 6910
Project	: Queensway-Etobicoke	Date Samples Received	: 20-Sep-2023 19:30
PO	:	Issue Date	: 28-Sep-2023 17:35
C-O-C number	:		
Sampler	: Client		
Site			
Quote number	: Standing Offer 2022		
No. of samples received	:2		
No. of samples analysed	:2		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

• No Method Blank value outliers occur.

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- Test sample Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group		Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sa	ample (LCS) Recove	ries							
Polycyclic Aromatic Hydrocarbons QC-1147321-002			Dinitropyrene, 1,8-	42397-65-9	E642D	139 % ^{LCS-H}	60.0-130%	Recovery greater than upper control limit	
Result Qualifie	ers								
Qualifier	Descrip	otion							
LCS-H Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.									

Regular Sample Surrogates

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Result	Limits	Comment
Samples Submitted							
Polycyclic Aromatic Hydrocarbons Surrogates	WT2330257-002	MW5	Terphenyl-d14, p-	1718-51-0	29.6 %	40.0-130	Recovery less than lower
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2330257-002	MW5	Terphenyl-d14, p-	1718-51-0	25.4 %	60.0-140	Recovery less than lower
						%	data quality objective
Phenolics Surrogates	WT2330257-001	MW6	Tribromophenol, 2,4,6-	118-79-6	162 %	60.0-140	Recovery greater than upper
						%	data quality objective

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E٧	aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT-4d]										
MW5	E550	20-Sep-2023					21-Sep-2023	4 days	0 days	✓
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT-4d]										
MW6	E550	20-Sep-2023					21-Sep-2023	4 days	1 days	✓
Aggregate Organics : Mineral Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
MW5	E567SG	20-Sep-2023	22-Sep-2023	28	2 days	1	22-Sep-2023	40 days	0 days	✓
				days						
Aggregate Organics : Mineral Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										,
MW6	E567SG	20-Sep-2023	22-Sep-2023	28	2 days	1	22-Sep-2023	40 days	0 days	1
				days						
Aggregate Organics : Oil & Grease by Gravimetry				1				-		
Amber glass (hydrochloric acid)	F 507	00.0				,		10.1		
MW5	E567	20-Sep-2023	22-Sep-2023	28	2 days	1	22-Sep-2023	40 days	0 days	1
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)	E567	20 San 2022	00 San 2000		2 days	1	22 San 2022	10 day	0 days	1
MW6	E567	20-Sep-2023	22-Sep-2023	28	2 days	•	22-Sep-2023	40 days	0 days	•
				days						
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) [ON MECP]	E562	20 San 2022	00.0 0000		C days	1	07.0-= 0000		7	1
MW5	E002	20-Sep-2023	26-Sep-2023	28	6 days	*	27-Sep-2023	28 days	/ days	*
				days						

alsglobal.com

trix: Water					E٧	aluation: × =	Holding time exce	edance ; •	= Within	Holding T
nalyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
ggregate Organics : Phenols (4AAP) in Water by Colorimetry										
mber glass total (sulfuric acid) [ON MECP]										
MW6	E562	20-Sep-2023	26-Sep-2023	28	6 days	✓	27-Sep-2023	28 days	7 days	1
				days						
nions and Nutrients : Chloride in Water by IC				-						
IDPE [ON MECP]										
MW5	E235.CI	20-Sep-2023	25-Sep-2023	28	5 days	1	25-Sep-2023	28 days	5 days	1
				days					, -	
				aayo						
nions and Nutrients : Chloride in Water by IC										
IDPE [ON MECP] MW6	E235.Cl	20-Sep-2023	25-Sep-2023	00	5 days	1	25-Sep-2023	28 days	5 days	1
MMAR .	E235.01	20-3ep-2023	20-3ep-2023	28	Juays	•	20-3ep-2023	20 uays	Suays	•
				days						
nions and Nutrients : Fluoride in Water by IC										
IDPE [ON MECP]										
MW5	E235.F	20-Sep-2023	25-Sep-2023	28	5 days	✓	25-Sep-2023	28 days	5 days	✓
				days						
nions and Nutrients : Fluoride in Water by IC										
IDPE [ON MECP]										
MW6	E235.F	20-Sep-2023	25-Sep-2023	28	5 days	1	25-Sep-2023	28 days	5 days	1
				days						
nions and Nutrients : Sulfate in Water by IC										
IDPE [ON MECP]										
MW5	E235.SO4	20-Sep-2023	25-Sep-2023	28	5 days	1	25-Sep-2023	28 days	5 days	1
			20 000 2020	days	o aajo		20 000 2020	20 44,0	o aayo	
				duyo						
nions and Nutrients : Sulfate in Water by IC										
IDPE [ON MECP]	5005 004	00.0 0000	05 0 - = 0000		E davia	1	05 0 - = 0000	00	E davia	1
MW6	E235.SO4	20-Sep-2023	25-Sep-2023	28	5 days	•	25-Sep-2023	28 days	5 days	×
				days						
nions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
mber glass total (sulfuric acid) [ON MECP]										
			27-Sep-2023	28	7 days	✓	27-Sep-2023	28 days	7 days	1
MW5	E318	20-Sep-2023	27-3ep-2023	20	·		1	. ,		
MW5	E318	20-Sep-2023	27-3 6 p-2023	days				- J	, i	
	E318	20-Sep-2023	27-36p-2023							
MW5 nions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level) Amber glass total (sulfuric acid) [ON MECP]	E318	20-Sep-2023	21-360-2023							
nions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 E318	20-Sep-2023 20-Sep-2023	27-Sep-2023		7 days		27-Sep-2023	28 days		

atrix: Water					E٧	/aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding 1
nalyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP]										
MW5	E372-U	20-Sep-2023	26-Sep-2023	28	6 days	1	27-Sep-2023	28 days	7 days	✓
				days						
nions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP]										
MW6	E372-U	20-Sep-2023	26-Sep-2023	28	6 days	1	27-Sep-2023	28 days	7 days	1
			·	days			·	-	-	
blavingted Dhanaling - DNA (Ontaria Society Source SVOC Torret List) by CC MS										
hlorinated Phenolics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS Amber glass/Teflon lined cap [ON MECP]										
MW5	E655F	20-Sep-2023	21-Sep-2023	14	1 days	1	22-Sep-2023	40 days	1 days	1
	20001	20 000 2020	21 000 2020	days	1 duyo		22 000 2020	io aayo	1 dayo	
				uays						
hlorinated Phenolics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]	E655F	20-Sep-2023	21-Sep-2023		4	1	00.0-== 0000	10 1-1-1-	4	1
MW6	E000F	20-3ep-2023	21-Sep-2025	14	1 days	•	22-Sep-2023	40 days	1 days	•
				days						
yanides : Total Cyanide				1				-		
UV-inhibited HDPE - total (sodium hydroxide)										
MW5	E333	20-Sep-2023	26-Sep-2023	14	6 days	1	26-Sep-2023	14 days	6 days	~
				days						
yanides : Total Cyanide										
UV-inhibited HDPE - total (sodium hydroxide)										
MW6	E333	20-Sep-2023	26-Sep-2023	14	6 days	1	26-Sep-2023	14 days	6 days	~
				days						
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab filtered)										
MW5	E421	20-Sep-2023	22-Sep-2023	0 hrs	38 hrs	*	22-Sep-2023	0 hrs	46 hrs	3 2
						UCP				UCP
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab filtered)										
MW6	E421	20-Sep-2023	22-Sep-2023	0 hrs	41 hrs	*	22-Sep-2023	0 hrs	49 hrs	32
			·			UCP				UCP
licrobiological Tests : E. coli (MF-mFC-BCIG)				1		-	1	I		
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
MW5	E012A.EC	20-Sep-2023					21-Sep-2023	48 hrs	23 hrs	1
	2012/120	20-00p-2020					21-06p-2023	-101113	20113	

atrix: Water					E١	/aluation: × =	Holding time excee	edance ; ง	= Within	Holding Ti
nalyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
licrobiological Tests : E. coli (MF-mFC-BCIG)			Date							
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
MW6	E012A.EC	20-Sep-2023					21-Sep-2023	48 hrs	26 hrs	1
onylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS										
MW5	E749B	20-Sep-2023	23-Sep-2023	7 days	3 days	1	26-Sep-2023	7 days	3 days	1
onylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS	57.000		00.0							
MW6	E749B	20-Sep-2023	23-Sep-2023	7 days	3 days	4	26-Sep-2023	7 days	3 days	~
onylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negativ	ve Mode									
Amber glass/Teflon lined cap - LCMS										
MW5	E749A	20-Sep-2023	23-Sep-2023	7 days	3 days	1	26-Sep-2023	7 days	3 days	~
onylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negativ	ve Mode									
Amber glass/Teflon lined cap - LCMS										
MW6	E749A	20-Sep-2023	23-Sep-2023	7 days	3 days	4	26-Sep-2023	7 days	3 days	~
hthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
MW5	E655F	20-Sep-2023	21-Sep-2023	14	1 days	1	22-Sep-2023	40 days	1 days	1
				days						
hthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS					1		1			
Amber glass/Teflon lined cap [ON MECP] MW6	E655F	20-Sep-2023	21-Sep-2023	14	1 days	1	22-Sep-2023	40 days	1 days	1
	Loool	20-000-2020	21-000-2020	days	1 days	·	22-00p-2020	40 day5	T days	۰ ۱
hysical Tests : pH by Meter										
HDPE [ON MECP]										
MW5	E108	20-Sep-2023	25-Sep-2023	14	5 days	1	26-Sep-2023	14 days	6 days	1
hunical Toota , all bu Matar				days						
hysical Tests : pH by Meter HDPE [ON MECP]										
MW6	E108	20-Sep-2023	25-Sep-2023	14	5 days	1	26-Sep-2023	14 days	6 days	1
				days						

trix: Water		,				aluation: × =	Holding time exce			Holding T
nalyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
nysical Tests : TSS by Gravimetry										
IDPE [ON MECP]										
MW5	E160	20-Sep-2023					27-Sep-2023	7 days	7 days	✓
nysical Tests : TSS by Gravimetry										
IDPE [ON MECP]							1			
MW6	E160	20-Sep-2023					27-Sep-2023	7 days	7 days	1
								,	,	
hashlaringted Diskowsky DOD American by CO NO										
olychlorinated Biphenyls : PCB Aroclors by GC-MS Amber glass/Teflon lined cap [ON MECP]										
MW6	E687	20-Sep-2023	24-Sep-2023	14	5 days	1	26-Sep-2023	40 days	1 days	1
INITIO	LUUI	20-06p-2020	24-06p-2020		Juays		20-06p-2020	-o uays	i uays	•
				days						
olychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
MW5	E687	20-Sep-2023	26-Sep-2023	14	6 days	1	27-Sep-2023	40 days	0 days	~
				days						
olycyclic Aromatic Hydrocarbons : PAHs (ON Special List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
MW5	E642D	20-Sep-2023	21-Sep-2023	14	1 days	1	25-Sep-2023	40 days	4 days	✓
				days						
Diversion of the second s							1			
Amber glass/Teflon lined cap [ON MECP]										
MW6	E642D	20-Sep-2023	21-Sep-2023	14	1 days	1	25-Sep-2023	40 days	4 days	1
				days				· •		
				dayo						
olycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS (Low Level)							1			
Amber glass/Teflon lined cap (sodium bisulfate)		00.0	05.0		E 1	1	00.0	40	0.1	1
MW5	E641A-L	20-Sep-2023	25-Sep-2023	14	5 days	*	28-Sep-2023	40 days	3 days	•
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS (Low Level)										
Amber glass/Teflon lined cap (sodium bisulfate)										
	E641A-L	20-Sep-2023	25-Sep-2023	14	5 days	1	28-Sep-2023	40 days	3 days	1
mber glass/Teflon lined cap (sodium bisulfate)	E641A-L	20-Sep-2023	25-Sep-2023	14 days	5 days	¥	28-Sep-2023	40 days	3 days	1
Amber glass/Teflon lined cap (sodium bisulfate) MW6		20-Sep-2023	25-Sep-2023		5 days	1	28-Sep-2023	40 days	3 days	✓
Amber glass/Teflon lined cap (sodium bisulfate) MW6 emi-Volatile Organics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS		20-Sep-2023	25-Sep-2023		5 days	4	28-Sep-2023	40 days	3 days	✓
Amber glass/Teflon lined cap (sodium bisulfate) MW6		20-Sep-2023 20-Sep-2023	25-Sep-2023 21-Sep-2023		5 days	+	28-Sep-2023	40 days 40 days	3 days 1 days	✓ ✓

atrix: Water						aluation: × =	Holding time exce			Holding T
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	-	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Semi-Volatile Organics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	;									
Amber glass/Teflon lined cap [ON MECP]										
MW6	E655F	20-Sep-2023	21-Sep-2023	14	1 days	✓	22-Sep-2023	40 days	1 days	1
				days						
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (NaOH+Buf) [ON MECP]										
MW5	E532	20-Sep-2023					22-Sep-2023	28 days	2 days	✓
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC								1		
HDPE - total (NaOH+Buf) [ON MECP]										
MW6	E532	20-Sep-2023					22-Sep-2023	28 days	2 days	1
									,	
Fotal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) [ON MECP]							1			
MW5	E508	20-Sep-2023	22-Sep-2023	28	2 days	1	26-Sep-2023	28 days	6 days	1
IVIVY J	2000	20 000 2020	22-009-2020	20 days	2 days		20-000-2020	20 days	0 days	
				uays						
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) [ON MECP] MW6	E508	20-Sep-2023	22-Sep-2023	00	2 days	1	26-Sep-2023	28 days	6 days	1
MIVVO	E306	20-3ep-2023	22-3ep-2023	28	z uays	•	20-3ep-2023	20 uays	0 uays	•
				days						
otal Metals : Total Metals in Water by CRC ICPMS								1		
HDPE total (nitric acid)										
MW5	E420	20-Sep-2023	21-Sep-2023	180	1 days	1	22-Sep-2023	180	2 days	1
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
MW6	E420	20-Sep-2023	21-Sep-2023	180	2 days	1	22-Sep-2023	180	2 days	1
				days				days		
/olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW5	E611D	20-Sep-2023	22-Sep-2023	14	2 days	✓	22-Sep-2023	14 days	2 days	✓
				days						
/olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS								1		
Glass vial (sodium bisulfate)										
MW6	E611D	20-Sep-2023	22-Sep-2023	14	2 days	1	22-Sep-2023	14 days	2 days	1
							L020			
				days						

Legend & Qualifier Definitions

Page	:	10 of 17
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Rec. HT: ALS recommended hold time (see units).

UCP: Unsuitable Container and/or Preservative used (invalidates standard hold time). Maximum hold time of zero applied. Test results may be biased low / unreliable, and may not meet regulatory requirements.

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type						on; ✓ = QC frequency within specific Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	ount Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)		Q 0 100 m			7101000			
Biochemical Oxygen Demand - 5 day	E550	1146825	1	20	5.0	5.0		
Chloride in Water by IC	E235.Cl	1152068	1	18	5.5	5.0	<u> </u>	
Dissolved Metals in Water by CRC ICPMS	E421	1147431	1	10	10.0	5.0	 	
E. coli (MF-mFC-BCIG)	E012A.EC	1146624	1	20	5.0	5.0	 	
Fluoride in Water by IC	E235.F	1152066	1	15	6.6	5.0	 	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	1150217	1	11	9.0	5.0	 ✓	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749B	1150216	1	11	9.0	5.0	 	
pH by Meter	E108	1152063	1	19	5.2	5.0	 	
Phenols (4AAP) in Water by Colorimetry	E562	1153632	1	19	5.2	5.0	 ✓	
Sulfate in Water by IC	E235.SO4	1152069	1	19	5.5	5.0	 	
Total Cyanide	E235.504	1151603	1	6	16.6	5.0	 ✓	
Total Hexavalent Chromium (Cr VI) by IC	E532	1148398	2	40	5.0	5.0	<u> </u>	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1153630	1	19	5.2	5.0	 	
Total Mercury in Water by CVAAS	E508	1148810	1	20	5.0	5.0	 	
Total Metals in Water by CRC ICPMS	E308	1147394	1	14	7.1	5.0	 	
Total Phosphorus by Colourimetry (0.002 mg/L)		1153631	1	20	5.0	5.0	 	
TSS by Gravimetry	E372-U E160	1155860	2	26	7.6	4.7	<u> </u>	
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1148562	1	19	5.2	5.0	<u> </u>	
	EOTID	1140302	1	15	0.2	5.0	~	
Laboratory Control Samples (LCS)	5550	1146925	1	20	5.0	5.0		
Biochemical Oxygen Demand - 5 day	E550	1146825 1147303	1	20 8	5.0	5.0	<u> </u>	
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F		· ·	-	12.5		<u> </u>	
Chloride in Water by IC	E235.Cl	1152068	1	18	5.5	5.0	<u> </u>	
Dissolved Metals in Water by CRC ICPMS	E421	1147431	1	10	10.0	5.0	<u> </u>	
Fluoride in Water by IC	E235.F	1152066	1	15	6.6	5.0	<u>√</u>	
Mineral Oil & Grease by Gravimetry	E567SG	1147334	1	8	12.5	5.0	<u> </u>	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	1150217	1	11	9.0	5.0	 ✓ 	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	1150216	1	11	9.0	5.0	<u> </u>	
Oil & Grease by Gravimetry	E567	1147333	1	13	7.6	5.0	<u> </u>	
PAHs (ON Special List) by GC-MS	E642D	1147321	1	8	12.5	5.0	✓	
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	1151423	1	3	33.3	5.0	✓	
PCB Aroclors by GC-MS	E687	1151168	2	19	10.5	4.7	✓	
pH by Meter	E108	1152063	1	19	5.2	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	1153632	1	19	5.2	5.0	✓	
Sulfate in Water by IC	E235.SO4	1152069	1	18	5.5	5.0	✓	
Total Cyanide	E333	1151603	1	6	16.6	5.0	✓	
Total Hexavalent Chromium (Cr VI) by IC	E532	1148398	2	40	5.0	5.0	✓	

Page Work Order	:	12 of 17 WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Matrix: Water		Evaluatio	on: × = QC freque	ency outside spe	ecification; 🗸 = 0	QC frequency wit	hin specificatio
Quality Control Sample Type				ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1153630	1	19	5.2	5.0	✓
Total Mercury in Water by CVAAS	E508	1148810	1	20	5.0	5.0	~
Total Metals in Water by CRC ICPMS	E420	1147394	1	14	7.1	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1153631	1	20	5.0	5.0	~
TSS by Gravimetry	E160	1155860	2	26	7.6	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1148562	1	19	5.2	5.0	~
Method Blanks (MB)							
Biochemical Oxygen Demand - 5 day	E550	1146825	1	20	5.0	5.0	1
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	1147303	1	8	12.5	5.0	 ✓
Chloride in Water by IC	E235.Cl	1152068	1	18	5.5	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	1147431	1	10	10.0	5.0	
E. coli (MF-mFC-BCIG)	E012A.EC	1146624	1	20	5.0	5.0	
Fluoride in Water by IC	E235.F	1152066	1	15	6.6	5.0	
Mineral Oil & Grease by Gravimetry	E567SG	1147334	1	8	12.5	5.0	 ✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	1150217	1	11	9.0	5.0	 ✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	1150216	1	11	9.0	5.0	 ✓
Oil & Grease by Gravimetry	E567	1147333	1	13	7.6	5.0	<u> </u>
PAHs (ON Special List) by GC-MS	E642D	1147321	1	8	12.5	5.0	1
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	1151423	1	3	33.3	5.0	 ✓
PCB Aroclors by GC-MS	E687	1151168	2	19	10.5	4.7	✓
Phenols (4AAP) in Water by Colorimetry	E562	1153632	1	19	5.2	5.0	1
Sulfate in Water by IC	E235.SO4	1152069	1	18	5.5	5.0	✓
Total Cyanide	E333	1151603	1	6	16.6	5.0	1
Total Hexavalent Chromium (Cr VI) by IC	E532	1148398	2	40	5.0	5.0	~
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1153630	1	19	5.2	5.0	✓
Total Mercury in Water by CVAAS	E508	1148810	1	20	5.0	5.0	1
Total Metals in Water by CRC ICPMS	E420	1147394	1	14	7.1	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1153631	1	20	5.0	5.0	~
TSS by Gravimetry	E160	1155860	2	26	7.6	4.7	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1148562	1	19	5.2	5.0	~
Matrix Spikes (MS)							
Chloride in Water by IC	E235.CI	1152068	1	18	5.5	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	1147431	1	10	10.0	5.0	
Fluoride in Water by IC	E235.F	1152066	1	15	6.6	5.0	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	1150217	1	11	9.0	5.0	· · ·
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	1150216	1	11	9.0	5.0	
Phenols (4AAP) in Water by Colorimetry	E562	1153632	1	19	5.2	5.0	
Sulfate in Water by IC	E235.SO4	1152069	1	18	5.5	5.0	
Total Cyanide	E333	1151603	1	6	16.6	5.0	

Page Work Order	:	13 of 17 WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Matrix: Water		Evaluation	n: × = QC freque	ncy outside spe	ecification; ✓ = 0	QC frequency wit	hin specificatior
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Total Hexavalent Chromium (Cr VI) by IC	E532	1148398	2	40	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1153630	1	19	5.2	5.0	~
Total Mercury in Water by CVAAS	E508	1148810	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1147394	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1153631	1	20	5.0	5.0	~
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1148562	1	19	5.2	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	ALS Environmental -			
	Waterloo			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Waterloo			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Waterloo			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
,	ALS Environmental -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Waterloo			
Total Cyanide	E333	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	ALS Environmental -			, , , , , , , , , , , , , , , , , , ,
	Waterloo			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
<i>,</i>	ALS Environmental -			
	Waterloo			

Page Work Order	:	15 of 17 WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Metals in Water by CRC ICPMS	E420 ALS Environmental -	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental - Waterloo			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 ALS Environmental -	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Waterloo			
Total Hexavalent Chromium (Cr VI) by IC	E532	Water	APHA 3500-Cr C (Ion Chromatography)	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV detection.
	ALS Environmental -			
	Waterloo			Results are based on an un-filtered, field-preserved sample.
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter.
	ALS Environmental -			
	Waterloo			Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	ALS Environmental - Waterloo			form a red complex which is measured colorimetrically.
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
	ALS Environmental - Waterloo		()	
Mineral Oil & Grease by Gravimetry	E567SG	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine
	ALS Environmental - Waterloo		() ()	Mineral Oil and Grease.
VOCs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
GC-MS	ALS Environmental -			Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and
	Waterloo			the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	ALS Environmental -			
	Waterloo			

Page Work Order	:	16 of 17 WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PAHs (ON Special List) by GC-MS	E642D	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by GC-MS.
	ALS Environmental - Waterloo			
BNA (Ontario Sanitary Sewer SVOC Target	E655F	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
List) by GC-MS				
	ALS Environmental -			
	Waterloo		EDA 0070E (
PCB Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	ALS Environmental -			
	Waterloo			
Nonylphenol, Octylphenol and BPA in Water	E749A	Water	J. Chrom A849 (1999)	An aliquot of $5.0 \pm 0.10 \text{ mL}$ of filtered sample is spiked with Nonylphenol-D4,
by LC-MS-MS Negative Mode			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	ALS Environmental -			analyzed by LC-MS/MS.
Nonylphenol Ethoxylates in Water by	Waterloo E749B	Water	J. Chrom A849 (1999)	Water samples are filtered and analyzed on LCMS/MS by direct injection.
LC-MS-MS Positive Mode	E749D	Water	p.467-482	
	ALS Environmental -		p.107 102	
	Waterloo			
Animal & Vegetable Oil & Grease by	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric)
Gravimetry				minus Mineral Oil & Grease (gravimetric)
	ALS Environmental - Waterloo			
Total PAH (Ontario Sewer Use Extended List)	EC640A	Water	Calculation (Sum of	Total PAH (Ontario Sewer Use) is the sum of the following PAHs: anthracene,
	20010/1		the Squares)	benz(a)anthracene, benzo(a)pyrene, benzo(b+j)fluoranthene, benzo(g,h,i)perylene,
	ALS Environmental -		. ,	benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene,
	Waterloo			indeno(1,2,3-c,d)pyrene, phenanthrene, pyrene, benzo(e)pyrene, perylene,
				3-methylcholanthrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene,
				7H-dibenzo(c,g)carbazole, dibenzo(a,i)pyrene, dibenz(a,j)acridine, and dibenz(a,h)acridine. When the PAH is less than LOR, zero is used for calculation.
		11-6-		
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
	ALS Environmental -		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels
	Waterloo			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
				biased low.
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	ALS Environmental -			
	Waterloo			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page Work Order	:	17 of 17 WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	ALS Environmental -			
	Waterloo			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	ALS Environmental -			
	Waterloo			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.
	Waterloo			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
PAHs DCM Extraction	EP642	Water	EPA 3510C (mod)	PAH are extracted from aqueous sample using DCM liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
Pesticides, PCB, and Neutral Extractable Chlorinated Hydrocarbons Extraction	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
Preparation of Nonylphenol and Nonylphenol Ethoxylates	EP749	Water	J. Chrom A849 (1999) p.467-482	An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol-D4, Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
Laloxylatoo	ALS Environmental -		p. 101-102	analyzed by LC-MS/MS.
	Waterloo			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order	WT2330257	Page	: 1 of 20
Client	: Hydrogeology Consulting Services	Laboratory	: ALS Environmental - Waterloo
Contact	: Chris Helmer	Account Manager	: Emily Smith
Address	: 25 Water Street West	Address	: 60 Northland Road, Unit 1
	Elora ON Canada N0B 1S0		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	:+1 519 886 6910
Project	: Queensway-Etobicoke	Date Samples Received	:20-Sep-2023 19:30
PO		Date Analysis Commenced	:21-Sep-2023
C-O-C number	:	Issue Date	:28-Sep-2023 17:24
Sampler	: Client 905 550 0969		
Site	:		
Quote number	: Standing Offer 2022		
No. of samples received	: 2		
No. of samples analysed	: 2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Nik Perkio	Inorganics Analyst	Waterloo Metals, Waterloo, Ontario
Rachel Cameron	Supervisor - Semi-Volatile Extractions	Waterloo Organics, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	Waterloo LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario
Zeba Patel		Waterloo Microbiology, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ıb-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
Physical Tests (QC	Lot: 1152063)											
WT2328550-001	Anonymous	рН		E108	0.10	pH units	7.96	7.88	1.01%	4%		
Physical Tests (QC	Lot: 1155860)											
WT2330099-001	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	7.4	8.6	1.2	Diff <2x LOR		
Physical Tests (QC	Lot: 1157562)											
WT2330400-001	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	4.9	5.8	0.9	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1152066)											
WT2328550-001	Anonymous	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.330	0.328	0.395%	20%		
Anions and Nu <u>trien</u>	ts (QC Lot: 1152068)											
WT2328550-001	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	141	141	0.00285%	20%		
Anions and Nutrien	ts (QC Lot: 1152069)											
WT2328550-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	155	155	0.0341%	20%		
Anions and Nutrien	ts (QC Lot: 1153630)											
WT2330236-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.50	mg/L	69.3	58.3	17.1%	20%		
Anions and Nutrien	ts (QC Lot: 1153631)											
WT2330224-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.466	0.465	0.284%	20%		
Cyanides (QC Lot:	1151603)											
CG2313223-001	Anonymous	Cyanide, strong acid dissociable (Total)		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR		
Microbiological Tes	ts (QC Lot: 1146624)											
WT2330274-021	Anonymous	Coliforms, Escherichia coli [E. coli]		E012A.EC	10	CFU/100mL	<10	<10	0	Diff <2x LOR		
Total Metals (QC Lo	ot: 1147394)											
WT2330257-001	MW6	Aluminum, total	7429-90-5	E420	0.0300	mg/L	7.84	7.48	4.67%	20%		
		Antimony, total	7440-36-0	E420	0.00100	mg/L	0.00422	0.00409	0.00013	Diff <2x LOR		
		Arsenic, total	7440-38-2	E420	0.00100	mg/L	0.0131	0.0135	3.54%	20%		
		Cadmium, total	7440-43-9	E420	0.0000500	mg/L	<0.0000500	<0.0000500	0	Diff <2x LOR		
		Chromium, total	7440-47-3	E420	0.00500	mg/L	0.0124	0.0126	0.00019	Diff <2x LOR		
		Cobalt, total	7440-48-4	E420	0.00100	mg/L	0.00689	0.00669	0.00019	Diff <2x LOR		
		Copper, total	7440-50-8	E420	0.00500	mg/L	0.0184	0.0184	0.00006	Diff <2x LOR		
		Lead, total	7439-92-1	E420	0.000500	mg/L	0.00731	0.00705	3.63%	20%		
		Manganese, total	7439-96-5	E420	0.00100	mg/L	0.357	0.352	1.61%	20%		

Page :	4 of 20
Work Order :	WT2330257
Client :	Hydrogeology Consulting Services
Project :	Queensway-Etobicoke

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 1147394) - continu	ued									
WT2330257-001	MW6	Molybdenum, total	7439-98-7	E420	0.000500	mg/L	0.0318	0.0314	1.26%	20%	
		Nickel, total	7440-02-0	E420	0.00500	mg/L	0.0158	0.0151	0.00072	Diff <2x LOR	
		Selenium, total	7782-49-2	E420	0.000500	mg/L	0.000694	0.000847	0.000153	Diff <2x LOR	
		Silver, total	7440-22-4	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00100	mg/L	0.00655	0.00655	0.0000005	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00300	mg/L	0.0729	0.0750	2.86%	20%	
		Zinc, total	7440-66-6	E420	0.0300	mg/L	0.0462	0.0446	0.0017	Diff <2x LOR	
otal Metals (QC Lo	ot: 1148810)										
BF2300281-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 1147431)										
WT2330445-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00206	0.00212	3.22%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	0.076	0.075	0.001	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.050	mg/L	190	190	0.362%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000019	0.000020	0.0000002	Diff <2x LOR	
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00054	0.00055	0.000004	Diff <2x LOR	
		Iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0128	0.0123	3.64%	20%	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	10.8	10.9	0.410%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00511	0.00509	0.331%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00050	0.00052	0.000010	Diff <2x LOR	
		Phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	9.31	9.37	0.647%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00620	0.00613	1.24%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	

Page	:	5 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Sub-Matrix: Water				ub-Matrix: Water				tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals (C	QC Lot: 1147431) - conti	nued									
WT2330445-001	Anonymous	Silicon, dissolved	7440-21-3	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	47.2	47.6	0.762%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00200	mg/L	7.66	7.58	1.01%	20%	
		Sulfur, dissolved	7704-34-9	E421	0.50	mg/L	203	208	2.62%	20%	
		Tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		Zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
Speciated Metals (C	QC Lot: 1148398)										
WP2323565-002	Anonymous	Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Speciated Metals (C	QC Lot: 1148410)										
WP2323880-001	Anonymous	Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Aggregate Organics	(QC Lot: 1146825)										
WT2330219-007	Anonymous	Biochemical oxygen demand [BOD]		E550	3.0	mg/L	<3.0	<3.0	0.0%	30%	
Aggregate Organics	(QC Lot: 1153632)										
TY2309537-001	Anonymous	Phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
/olatile Organic Co	mpounds (QC Lot: 1148	562)									
BF2300306-001	Anonymous	Benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
			1								1

alsglobal.com

Page :	6 of 20
Work Order :	WT2330257
Client :	Hydrogeology Consulting Services
Project :	Queensway-Etobicoke

Sub-Matrix: Water	ub-Matrix: Water				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 11	48562) - continued									
BF2300306-001	Anonymous	Toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
Nonylphenols (QC	Lot: 1150216)										
CG2313200-001	Anonymous	Nonylphenols [NP]	84852-15-3	E749A	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
Nonylphenols (QC	Lot: 1150217)										
CG2313200-001	Anonymous	Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.10	µg/L	0.40	0.44	0.04	Diff <2x LOR	
		Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	10.0	µg/L	<10.0	<10.0	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1155860)						
Solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Physical Tests (QCLot: 1157562)						
Solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 1152066)						
Fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 1152068)						
Chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 1152069)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 1153630)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1153631)						
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
yanides (QCLot: 1151603)						
Cyanide, strong acid dissociable (Total)		E333	0.002	mg/L	<0.0020	
/licrobiological Tests (QCLot: 1146624)						
Coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
otal Metals (QCLot: 1147394)						
Aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
Cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	

Page	:	8 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1147394) - co	ntinued					
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 1148810)						
Mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 1147431)						
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
Boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	<0.000010	
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
Iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	<0.050	
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	<0.00020	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
Tellurium, dissolved	13494-80-9	F421	0.0002	mg/L	<0.00020	

Page	:	9 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals(QCLot: 1147431) - c	ontinued				
Thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
Thorium, dissolved	7440-29-1 E421	0.0001	mg/L	<0.00010	
Tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
Titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
Tungsten, dissolved	7440-33-7 E421	0.0001	mg/L	<0.00010	
Uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
Speciated Metals (QCLot: 1148398)					
Chromium, hexavalent [Cr VI], total	18540-29-9 E532	0.0005	mg/L	<0.00050	
Speciated Metals (QCLot: 1148410)					
Chromium, hexavalent [Cr VI], total	18540-29-9 E532	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 1146825)					
Biochemical oxygen demand [BOD]	E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 1147333)					
Oil & grease (gravimetric)	E567	5	mg/L	<5.0	
Aggregate Organics (QCLot: 1147334)					
Oil & grease, mineral (gravimetric)	E567SG	5	mg/L	<5.0	
Aggregate Organics (QCLot: 1153632)					
Phenols, total (4AAP)	E562	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLot: 1	148562)				
Benzene	71-43-2 E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3 E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,2-	95-50-1 E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7 E611D	0.5	µg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2 E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2 E611D	1	µg/L	<1.0	
Dichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	µg/L	<0.30	
Ethylbenzene	100-41-4 E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	µg/L	<0.50	
Tetrachloroethylene	127-18-4 E611D	0.5	µg/L	<0.50	
Toluene	108-88-3 E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6 E611D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1 E611D	0.4	µg/L	<0.40	

Page	:	10 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot: [•]	148562) - continued				
Xylene, o-	95-47-6 E611D	0.3	µg/L	<0.30	
Polycyclic Aromatic Hydrocarbons (Q0	CLot: 1147321)				
Dibenz(a,h)acridine	226-36-8 E642D	0.05	µg/L	<0.050	
Dibenz(a,j)acridine	224-42-0 E642D	0.05	µg/L	<0.050	
Dibenzo(a,i)pyrene	189-55-9 E642D	0.05	µg/L	<0.050	
Dibenzo(c,g)carbazole, 7H-	194-59-2 E642D	0.05	µg/L	<0.050	
Dinitropyrene, 1,3-	75321-20-9 E642D	1	μg/L	<1.0	
Dinitropyrene, 1,6-	42397-64-8 E642D	1	μg/L	<1.0	
Dinitropyrene, 1,8-	42397-65-9 E642D	1	μg/L	<1.0	
Methylcholanthrene, 3-	56-49-5 E642D	0.05	μg/L	<0.050	
Polycyclic Aromatic Hydrocarbons (Q0	CLot: 1151423)				
Anthracene	120-12-7 E641A-L	0.01	μg/L	<0.010	
Benz(a)anthracene	56-55-3 E641A-L	0.01	μg/L	<0.010	
Benzo(a)pyrene	50-32-8 E641A-L	0.005	μg/L	<0.0050	
Benzo(b+j)fluoranthene	n/a E641A-L	0.01	μg/L	<0.010	
Benzo(e)pyrene	192-97-2 E641A-L	0.01	μg/L	<0.010	
Benzo(g,h,i)perylene	191-24-2 E641A-L	0.01	μg/L	<0.010	
Benzo(k)fluoranthene	207-08-9 E641A-L	0.01	μg/L	<0.010	
Chrysene	218-01-9 E641A-L	0.01	μg/L	<0.010	
Dibenz(a,h)anthracene	53-70-3 E641A-L	0.005	μg/L	<0.0050	
Fluoranthene	206-44-0 E641A-L	0.01	μg/L	<0.010	
Indeno(1,2,3-c,d)pyrene	193-39-5 E641A-L	0.01	μg/L	<0.010	
Perylene	198-55-0 E641A-L	0.01	μg/L	<0.010	
Phenanthrene	85-01-8 E641A-L	0.01	μg/L	<0.010	
Pyrene	129-00-0 E641A-L	0.01	μg/L	<0.010	
Phthalate Esters (QCLot: 1147303)					
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7 E655F	2	μg/L	<2.0	
Di-n-butyl phthalate	84-74-2 E655F	1	μg/L	<1.0	
Semi-Volatile Organics (QCLot: 114730)3)				
Dichlorobenzidine, 3,3'-	91-94-1 E655F	0.4	µg/L	<0.40	
Chlorinated Phenolics (QCLot: 114730	3)				
Pentachlorophenol [PCP]	87-86-5 E655F	0.5	µg/L	<0.50	
Nonylphenols (QCLot: 1150216)					
Nonylphenols [NP]	84852-15-3 E749A	1	µg/L	<1.0	
Nonylphenols (QCLot: 1150217)					

Page	:	11 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Nonylphenols (QCLot: 1150217) - conti	nued					
Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	<0.10	
Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	<2.0	
Polychlorinated Biphenyls (QCLot: 115 [,]	1168)				·	
Aroclor 1016	12674-11-2	E687	0.02	µg/L	<0.020	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	<0.020	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	<0.020	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	<0.020	
Aroclor 1248	12672-29-6	E687	0.02	µg/L	<0.020	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	<0.020	
Aroclor 1260	11096-82-5	E687	0.02	µg/L	<0.020	
Aroclor 1262	37324-23-5	E687	0.02	µg/L	<0.020	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	<0.020	
Polychlorinated Biphenyls (QCLot: 115	5266)					
Aroclor 1016	12674-11-2	E687	0.02	µg/L	<0.020	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	<0.020	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	<0.020	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	<0.020	
Aroclor 1248	12672-29-6	E687	0.02	µg/L	<0.020	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	<0.020	
Aroclor 1260	11096-82-5	E687	0.02	µg/L	<0.020	
Aroclor 1262	37324-23-5	E687	0.02	µg/L	<0.020	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	<0.020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
					Spike Recovery (%) Recovery Limits (%)			Limits (%)		
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 1152063)										
pH	E1	108		pH units	7 pH units	101	98.0	102		
Physical Tests (QCLot: 1155860)										
Solids, total suspended [TSS]	E1	160	3	mg/L	150 mg/L	104	85.0	115		
Physical Tests (QCLot: 1157562)										
Solids, total suspended [TSS]	E1	160	3	mg/L	150 mg/L	101	85.0	115		
Anions and Nutrients (QCLot: 1152066)										
Fluoride	16984-48-8 E2	235.F	0.02	mg/L	1 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 1152068)										
Chloride	16887-00-6 E2	235.CI	0.5	mg/L	100 mg/L	99.5	90.0	110		
Anions and Nutrients (QCLot: 1152069)										
Sulfate (as SO4)	14808-79-8 E2	235.SO4	0.3	mg/L	100 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 1153630)										
Kjeldahl nitrogen, total [TKN]	E3	318	0.05	mg/L	4 mg/L	99.5	75.0	125		
Anions and Nutrients (QCLot: 1153631)										
Phosphorus, total	7723-14-0 E3	372-U	0.002	mg/L	0.393 mg/L	112	80.0	120		
Cyanides (QCLot: 1151603)										
Cyanide, strong acid dissociable (Total)	E3	333	0.002	mg/L	0.25 mg/L	89.4	80.0	120		
Total Metals (QCLot: 1147394)										
Aluminum, total	7429-90-5 E4		0.003	mg/L	0.1 mg/L	101	80.0	120		
Antimony, total	7440-36-0 E4		0.0001	mg/L	0.05 mg/L	106	80.0	120		
Arsenic, total	7440-38-2 E4		0.0001	mg/L	0.05 mg/L	109	80.0	120		
Cadmium, total	7440-43-9 E4		0.000005	mg/L	0.005 mg/L	105	80.0	120		
Chromium, total	7440-47-3 E4		0.0005	mg/L	0.0125 mg/L	105	80.0	120		
Cobalt, total		420	0.0001	mg/L	0.0125 mg/L	103	80.0	120		
Copper, total	7440-50-8 E4		0.0005	mg/L	0.0125 mg/L	103	80.0	120		
Lead, total	7439-92-1 E4		0.00005	mg/L	0.025 mg/L	103	80.0	120		
Manganese, total	7439-96-5 E4		0.0001	mg/L	0.0125 mg/L	105	80.0	120		
Molybdenum, total	7439-98-7 E4		0.00005	mg/L	0.0125 mg/L	104	80.0	120		
Nickel, total	7440-02-0 E4		0.0005	mg/L	0.025 mg/L	103	80.0	120		
Selenium, total	7782-49-2 E4	420	0.00005	mg/L	0.05 mg/L	105	80.0	120		

Page	:	13 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report					
						Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 1147394) - contin	nued										
Silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	96.5	80.0	120			
Tin, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	103	80.0	120			
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.0125 mg/L	101	80.0	120			
Zinc, total	7440-66-6	E420	0.003	mg/L	0.025 mg/L	105	80.0	120			
Total Metals (QCLot: 1148810)											
Mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	103	80.0	120			
Dissolved Metals (QCLot: 1147431)											
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	0.1 mg/L	96.8	80.0	120			
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	0.05 mg/L	106	80.0	120			
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	0.05 mg/L	106	80.0	120			
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.0125 mg/L	101	80.0	120			
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.005 mg/L	102	80.0	120			
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	0.05 mg/L	102	80.0	120			
Boron, dissolved	7440-42-8	E421	0.01	mg/L	0.05 mg/L	98.8	80.0	120			
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.005 mg/L	100	80.0	120			
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	2.5 mg/L	103	80.0	120			
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.0025 mg/L	104	80.0	120			
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.0125 mg/L	100	80.0	120			
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.0125 mg/L	99.8	80.0	120			
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.0125 mg/L	99.3	80.0	120			
Iron, dissolved	7439-89-6	E421	0.01	mg/L	0.05 mg/L	101	80.0	120			
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.025 mg/L	100	80.0	120			
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.0125 mg/L	100	80.0	120			
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	2.5 mg/L	111	80.0	120			
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.0125 mg/L	102	80.0	120			
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.0125 mg/L	103	80.0	120			
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.025 mg/L	98.7	80.0	120			
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	0.5 mg/L	108	80.0	120			
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	2.5 mg/L	102	80.0	120			
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.005 mg/L	102	80.0	120			
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	104	80.0	120			
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	0.5 mg/L	106	60.0	140			
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.005 mg/L	96.5	80.0	120			
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	2.5 mg/L	106	80.0	120			
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.0125 mg/L	101	80.0	120			

Page	:	14 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report					
	Spike Recovery (%) Recovery Limits (%)										
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifie		
Dissolved Metals (QCLot: 1147431) - continu	ued										
Sulfur, dissolved	7704-34-9 E4	21	0.5	mg/L	2.5 mg/L	104	80.0	120			
Tellurium, dissolved	13494-80-9 E4	21	0.0002	mg/L	0.005 mg/L	103	80.0	120			
Thallium, dissolved	7440-28-0 E4	21	0.00001	mg/L	0.05 mg/L	105	80.0	120			
Thorium, dissolved	7440-29-1 E4	21	0.0001	mg/L	0.005 mg/L	96.4	80.0	120			
Tin, dissolved	7440-31-5 E4	21	0.0001	mg/L	0.025 mg/L	102	80.0	120			
Titanium, dissolved	7440-32-6 E4	21	0.0003	mg/L	0.0125 mg/L	97.1	80.0	120			
Tungsten, dissolved	7440-33-7 E4	21	0.0001	mg/L	0.005 mg/L	97.7	80.0	120			
Uranium, dissolved	7440-61-1 E4	21	0.00001	mg/L	0.00025 mg/L	99.4	80.0	120			
Vanadium, dissolved	7440-62-2 E4	21	0.0005	mg/L	0.025 mg/L	102	80.0	120			
Zinc, dissolved	7440-66-6 E4	21	0.001	mg/L	0.025 mg/L	99.5	80.0	120			
Zirconium, dissolved	7440-67-7 E4	21	0.0002	mg/L	0.005 mg/L	97.4	80.0	120			
				, j	- -						
Speciated Metals (QCLot: 1148398)											
Chromium, hexavalent [Cr VI], total	18540-29-9 E5	532	0.0005	mg/L	0.025 mg/L	98.5	80.0	120			
Speciated Metals (QCLot: 1148410)											
Chromium, hexavalent [Cr VI], total	18540-29-9 E5	532	0.0005	mg/L	0.025 mg/L	93.8	80.0	120			
Aggregate Organics (QCLot: 1146825)											
Biochemical oxygen demand [BOD]	E5	550	2	mg/L	198 mg/L	109	85.0	115			
Aggregate Organics (QCLot: 1147333)											
Oil & grease (gravimetric)	E5	567	5	mg/L	200 mg/L	97.7	70.0	130			
Aggregate Organics (QCLot: 1147334)											
Oil & grease, mineral (gravimetric)	E5	67SG	5	mg/L	100 mg/L	95.2	70.0	130			
Aggregate Organics (QCLot: 1153632)											
Phenols, total (4AAP)	E5	562	0.001	mg/L	0.02 mg/L	100	85.0	115			
Volatile Organic Compounds (QCLot: 114856	62)										
Benzene	71-43-2 E6	311D	0.5	µg/L	100 µg/L	97.4	70.0	130			
Chloroform	67-66-3 E6	611D	0.5	µg/L	100 µg/L	96.9	70.0	130			
Dichlorobenzene, 1,2-	95-50-1 E6	611D	0.5	µg/L	100 µg/L	97.5	70.0	130			
Dichlorobenzene, 1,4-	106-46-7 E6	611D	0.5	µg/L	100 µg/L	98.4	70.0	130			
Dichloroethylene, cis-1,2-	156-59-2 E6	611D	0.5	µg/L	100 µg/L	98.0	70.0	130			
Dichloromethane	75-09-2 E6	511D	1	μg/L	100 µg/L	98.1	70.0	130			
Dichloropropylene, trans-1,3-	10061-02-6 E6		0.3	µg/L	100 μg/L	86.6	70.0	130			
Ethylbenzene	100-41-4 E6		0.5	µg/L	100 µg/L	94.1	70.0	130			
Tetrachloroethane, 1,1,2,2-	79-34-5 E6		0.5	μg/L	100 μg/L	97.6	70.0	130			
100000000000000, 1,1,2,2 ⁻	10 04-0 20		0.0	P3, ⊏	100 µg/L	51.0	10.0	100			

Page	:	15 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
						Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Volatile Organic Compounds (QCLot: 1148	562) - continued									
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	97.1	70.0	130		
Toluene	108-88-3	E611D	0.5	µg/L	100 µg/L	97.0	70.0	130		
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	97.0	70.0	130		
Xylene, m+p-	179601-23-1	E611D	0.4	μg/L	200 µg/L	94.6	70.0	130		
Xylene, o-	95-47-6	E611D	0.3	μg/L	100 µg/L	98.5	70.0	130		
Polycyclic Aromatic Hydrocarbons (QCLot	: 1147321)									
Dibenz(a,h)acridine	226-36-8	E642D	0.05	µg/L	1.6 µg/L	90.3	60.0	130		
Dibenz(a,j)acridine	224-42-0	E642D	0.05	µg/L	1.6 µg/L	92.8	60.0	130		
Dibenzo(a,i)pyrene	189-55-9	E642D	0.05	µg/L	1.6 µg/L	90.7	60.0	130		
Dibenzo(c,g)carbazole, 7H-	194-59-2	E642D	0.05	µg/L	1.6 µg/L	98.8	60.0	130		
Dinitropyrene, 1,3-	75321-20-9	E642D	1	µg/L	1.6 µg/L	113	60.0	130		
Dinitropyrene, 1,6-	42397-64-8	E642D	1	µg/L	1.6 µg/L	82.5	60.0	130		
Dinitropyrene, 1,8-	42397-65-9	E642D	1	µg/L	1.6 µg/L	# 139	60.0	130	LCS-H	
Methylcholanthrene, 3-	56-49-5	E642D	0.05	µg/L	1.6 μg/L	110	60.0	130		
Polycyclic Aromatic Hydrocarbons (QCLot										
Anthracene	120-12-7	E641A-L	0.01	µg/L	0.5263 µg/L	89.1	50.0	140		
Benz(a)anthracene	56-55-3	E641A-L	0.01	µg/L	0.5263 µg/L	126	50.0	140		
Benzo(a)pyrene	50-32-8	E641A-L	0.005	µg/L	0.5263 µg/L	108	50.0	140		
Benzo(b+j)fluoranthene	n/a	E641A-L	0.01	µg/L	0.5263 µg/L	95.4	50.0	140		
Benzo(e)pyrene	192-97-2	E641A-L	0.01	µg/L	0.5263 µg/L	90.8	50.0	140		
Benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	µg/L	0.5263 µg/L	98.8	50.0	140		
Benzo(k)fluoranthene	207-08-9	E641A-L	0.01	µg/L	0.5263 µg/L	98.5	50.0	140		
Chrysene	218-01-9	E641A-L	0.01	µg/L	0.5263 µg/L	116	50.0	140		
Dibenz(a,h)anthracene	53-70-3	E641A-L	0.005	µg/L	0.5263 µg/L	107	50.0	140		
Fluoranthene	206-44-0	E641A-L	0.01	µg/L	0.5263 µg/L	114	50.0	140		
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	µg/L	0.5263 µg/L	135	50.0	140		
Perylene	198-55-0	E641A-L	0.01	µg/L	0.5263 µg/L	105	50.0	140		
Phenanthrene	85-01-8	E641A-L	0.01	µg/L	0.5263 µg/L	112	50.0	140		
Pyrene	129-00-0	E641A-L	0.01	µg/L	0.5263 µg/L	118	50.0	140		
Phthalate Esters (QCLot: 1147303) bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E655E	2	μg/L	64.00/	125	50.0	140		
	84-74-2		1	μg/L	6.4 µg/L	125	50.0	140		
Di-n-butyl phthalate	04-74-2	20001		µy/∟	6.4 µg/L	001	50.0	140		
Semi-Volatile Organics (QCLot: 1147303)										

Page :	16 of 20
Work Order :	WT2330257
Client :	Hydrogeology Consulting Services
Project :	Queensway-Etobicoke

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie	
Semi-Volatile Organics (QCLot: 1147303) -	continued									
Dichlorobenzidine, 3,3'-	91-94-1	E655F	0.4	µg/L	1.6 µg/L	65.6	50.0	140		
Chlorinated Phenolics (QCLot: 1147303)										
Pentachlorophenol [PCP]	87-86-5	E655F	0.5	µg/L	4.8 μg/L	132	50.0	140		
Nonylphenols (QCLot: 1150216)									1	
Nonylphenols [NP]	84852-15-3	E749A	1	µg/L	10 µg/L	113	75.0	125		
Nonylphenols (QCLot: 1150217)						1				
Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	1 µg/L	99.7	75.0	125		
Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	20 µg/L	96.8	75.0	125		
Polychlorinated Biphenyls (QCLot: 115116	8)									
vroclor 1016	12674-11-2	E687	0.02	µg/L	0.2 μg/L	105	60.0	140		
Aroclor 1221	11104-28-2	E687	0.02	µg/L	0.2 μg/L	105	60.0	140		
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 μg/L	105	60.0	140		
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	105	60.0	140		
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	95.8	60.0	140		
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 μg/L	95.0	60.0	140		
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 μg/L	96.5	60.0	140		
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 μg/L	96.5	60.0	140		
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 µg/L	96.5	60.0	140		
Polychlorinated Biphenyls (QCLot: 115526	6)									
Aroclor 1016	12674-11-2	E687	0.02	µg/L	0.2 μg/L	105	60.0	140		
Aroclor 1221	11104-28-2	E687	0.02	µg/L	0.2 µg/L	105	60.0	140		
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 μg/L	105	60.0	140		
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	105	60.0	140		
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	96.6	60.0	140		
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	97.1	60.0	140		
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 µg/L	116	60.0	140		
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 µg/L	116	60.0	140		
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 µg/L	116	60.0	140		

Qualifiers

Description

Qualifier

LCS-H

Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery Limits (%)			
aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
nions and Nutri	ents (QCLot: 1152066)										
WT2328550-001	Anonymous	Fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125		
Anions and Nutri	ents (QCLot: 1152068)										
WT2328550-001	Anonymous	Chloride	16887-00-6	E235.Cl	ND mg/L	100 mg/L	ND	75.0	125		
nions and Nutri	ents (QCLot: 1152069)										
WT2328550-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutri	ents (QCLot: 1153630)										
WT2330236-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130		
Anions and Nutri	ents (QCLot: 1153631)										
WT2330224-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	ND mg/L	0.1 mg/L	ND	70.0	130		
Cyanides (QCLo	t: 1151603)										
CG2313223-001	Anonymous	Cyanide, strong acid dissociable (Total)		E333	0.243 mg/L	0.25 mg/L	97.1	75.0	125		
Fotal Metals (QC	Lot: 1147394)										
WT2330308-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0949 mg/L	0.1 mg/L	94.9	70.0	130		
		Antimony, total	7440-36-0	E420	0.0544 mg/L	0.05 mg/L	109	70.0	130		
		Arsenic, total	7440-38-2	E420	0.0541 mg/L	0.05 mg/L	108	70.0	130		
		Cadmium, total	7440-43-9	E420	0.00499 mg/L	0.005 mg/L	99.9	70.0	130		
		Chromium, total	7440-47-3	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130		
		Cobalt, total	7440-48-4	E420	0.0126 mg/L	0.0125 mg/L	101	70.0	130		
		Copper, total	7440-50-8	E420	0.0124 mg/L	0.0125 mg/L	99.5	70.0	130		
		Lead, total	7439-92-1	E420	0.0247 mg/L	0.025 mg/L	98.8	70.0	130		
		Manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130		
		Molybdenum, total	7439-98-7	E420	0.0132 mg/L	0.0125 mg/L	106	70.0	130		
		Nickel, total	7440-02-0	E420	0.0247 mg/L	0.025 mg/L	98.9	70.0	130		
		Selenium, total	7782-49-2	E420	0.0519 mg/L	0.05 mg/L	104	70.0	130		
		Silver, total	7440-22-4	E420	0.00467 mg/L	0.005 mg/L	93.3	70.0	130		
		Tin, total	7440-31-5	E420	0.0256 mg/L	0.025 mg/L	102	70.0	130		
		Titanium, total	7440-32-6	E420	0.0129 mg/L	0.0125 mg/L	103	70.0	130		
		Zinc, total	7440-66-6	E420	0.0236 mg/L	0.025 mg/L	94.3	70.0	130		

Page : 18 of 20 Work Order : WT2330257 Client : Hydrogeology Consulting Services Project : Queensway-Etobicoke

Matrix Spike (MS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike Laboratory sample Client sample ID Analyte **CAS Number** Method Concentration Target MS Low High Qualifier ID Total Metals (QCLot: 1148810) - continued BF2300281-002 Anonymous Mercury, total 7439-97-6 E508 0.000104 mg/L 0.0001 mg/L 104 70.0 130 ----**Dissolved Metals (QCLot: 1147431)** WT2330445-002 Anonymous Aluminum, dissolved 7429-90-5 E421 0.886 mg/L 1 mg/L 88.6 70.0 130 ----Antimony, dissolved 7440-36-0 E421 0.471 mg/L 0.5 mg/L 94.2 70.0 130 ----Arsenic, dissolved 7440-38-2 E421 0.504 mg/L 130 0.5 mg/L 101 70.0 ----Barium, dissolved 7440-39-3 E421 0.117 mg/L 0.125 mg/L 93.9 70.0 130 Bervllium, dissolved 7440-41-7 E421 0.0465 mg/L 0.05 mg/L 92.9 70.0 130 ----Bismuth. dissolved 0.471 mg/L 7440-69-9 E421 0.5 mg/L 94.1 70.0 130 Boron, dissolved 7440-42-8 E421 0.368 mg/L 0.5 mg/L 73.7 70.0 130 ____ Cadmium, dissolved 0.05 mg/L 7440-43-9 E421 0.0476 mg/L 95.2 70.0 130 ----Calcium, dissolved 7440-70-2 E421 ND mg/L 70.0 25 mg/L ND 130 ----Cesium, dissolved 7440-46-2 E421 0.0244 mg/L 0.025 mg/L 97.8 70.0 130 ____ Chromium, dissolved 7440-47-3 E421 0.119 mg/L 0.125 mg/L 70.0 130 95.6 ----Cobalt, dissolved 7440-48-4 E421 0.118 mg/L 0.125 mg/L 70.0 130 94.1 ----Copper, dissolved 7440-50-8 E421 0.118 mg/L 0.125 mg/L 94 4 70.0 130 ----Iron, dissolved E421 7439-89-6 0.476 mg/L 0.5 mg/L 95.3 70.0 130 ____ Lead, dissolved 7439-92-1 E421 0.233 mg/L 0.25 mg/L 93.1 70.0 130 ----Lithium, dissolved 7439-93-2 E421 0.114 mg/L 0.125 mg/L 91.4 70.0 130 ----Magnesium, dissolved 7439-95-4 E421 ND mg/L ND 70.0 25 mg/L 130 ----Manganese, dissolved 7439-96-5 E421 70.0 0.118 mg/L 0.125 mg/L 94.4 130 ----Molybdenum, dissolved 7439-98-7 E421 0.122 mg/L 0.125 mg/L 70.0 130 97.8 ----Nickel, dissolved 7440-02-0 E421 0.236 mg/L 70.0 130 0.25 mg/L 94.3 ----Phosphorus, dissolved 7723-14-0 E421 4.81 mg/L 96.2 70.0 130 5 mg/L ----Potassium, dissolved 7440-09-7 E421 23.6 mg/L 25 mg/L 94.4 70.0 130 ----Rubidium, dissolved 7440-17-7 E421 0.0466 mg/L 70.0 130 0.05 mg/L 93.3 ----Selenium, dissolved 7782-49-2 E421 0.498 mg/L 0.5 mg/L 99.6 70.0 130 ----Silicon, dissolved E421 7440-21-3 5.07 mg/L 5 mg/L 101 70.0 130 ----Silver, dissolved 7440-22-4 E421 0.0446 mg/L 0.05 mg/L 89.2 70.0 130 ----Sodium, dissolved 7440-23-5 E421 ND mg/L 25 mg/L ND 70.0 130 ----Strontium, dissolved 7440-24-6 E421 ND mg/L 0.125 mg/L ND 70.0 130 ----Sulfur, dissolved 7704-34-9 E421 ND mg/L 25 mg/L ND 70.0 130 ----Tellurium, dissolved 13494-80-9 E421 0.0473 mg/L 0.05 mg/L 94.5 70.0 130 ----Thallium, dissolved 7440-28-0 E421 0.466 mg/L 0.5 mg/L 93.3 70.0 130 ----Thorium, dissolved 7440-29-1 E421 0.0440 mg/L 0.05 mg/L 87.9 70.0 130 ----Tin, dissolved 7440-31-5 E421 0.240 mg/L 0.25 mg/L 96.1 70.0 130 ____

Page	:	19 of 20
Work Order	:	WT2330257
Client	:	Hydrogeology Consulting Services
Project	:	Queensway-Etobicoke

Matrix Spike (MS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike Laboratory sample Client sample ID Analyte **CAS Number** Method Concentration Target MS Low High Qualifier ID Dissolved Metals (QCLot: 1147431) - continued WT2330445-002 Titanium, dissolved Anonymous 7440-32-6 E421 0.121 mg/L 0.125 mg/L 96.8 70.0 130 ----Tungsten, dissolved 7440-33-7 E421 0.0458 mg/L 0.05 mg/L 91.6 70.0 130 ----Uranium, dissolved E421 7440-61-1 0.00228 mg/L 0.0025 mg/L 130 91.4 70.0 Vanadium, dissolved 7440-62-2 E421 0.243 mg/L 0.25 mg/L 97.1 70.0 130 ----Zinc. dissolved 7440-66-6 E421 0.233 mg/L 0.25 mg/L 93.1 70.0 130 Zirconium, dissolved 0.0456 mg/L 7440-67-7 E421 130 0.05 mg/L 91.3 70.0 ----Speciated Metals (QCLot: 1148398) WP2323565-002 Chromium, hexavalent [Cr VI], total Anonymous E532 0.0363 mg/L 18540-29-9 0.04 mg/L 90.7 70.0 130 ----Speciated Metals (QCLot: 1148410) WP2323880-001 Anonymous Chromium, hexavalent [Cr VI], total 18540-29-9 E532 0.0378 mg/L 94.6 70.0 130 0.04 mg/L ____ Aggregate Organics (QCLot: 1153632) TY2309537-001 Anonymous Phenols, total (4AAP) E562 0.0204 mg/L 0.02 mg/L 102 75.0 125 ----____ Volatile Organic Compounds (QCLot: 1148562) BF2300306-001 Anonymous Benzene 71-43-2 E611D 98.0 µg/L 100 µg/L 98.0 60.0 140 ----Chloroform 67-66-3 E611D 98.4 µg/L 100 µg/L 98.4 60.0 140 ----Dichlorobenzene, 1.2-95-50-1 E611D 97.4 µg/L 100 µg/L 97.4 60.0 140 ----Dichlorobenzene, 1,4-E611D 106-46-7 100 µg/L 96.5 60.0 140 96.5 µg/L ----Dichloroethylene, cis-1,2-E611D 156-59-2 99.6 µg/L 100 µg/L 99.6 60.0 140 ----Dichloromethane 75-09-2 E611D 100 µg/L 100 µg/L 100 60.0 140 ----Dichloropropylene, trans-1,3-10061-02-6 E611D 88.9 µg/L 100 µg/L 88.9 60.0 140 ----Ethylbenzene 100-41-4 E611D 92.2 µg/L 100 µg/L 92.2 60.0 140 ____ Tetrachloroethane, 1,1,2,2-79-34-5 E611D 102 µg/L 100 µg/L 102 60.0 140 ----Tetrachloroethylene 127-18-4 E611D 93.7 60.0 140 93.7 µg/L 100 µg/L ----Toluene 108-88-3 E611D 95.1 µg/L 100 µg/L 95.1 60.0 140 ----Trichloroethylene 79-01-6 E611D 96.2 µg/L 100 µg/L 96.2 60.0 140 ----Xylene, m+p-179601-23-1 E611D 92.6 60.0 140 185 µg/L 200 µg/L ----Xylene, o-95-47-6 E611D 97.2 µg/L 100 µg/L 97.2 60.0 140 ----Nonylphenols (QCLot: 1150216) CG2313200-001 Anonymous Nonylphenols [NP] 84852-15-3 E749A 11.2 µg/L 112 60.0 140 10 µg/L ----Nonylphenols (QCLot: 1150217) CG2313200-001 Anonymous Nonylphenol diethoxylates [NP2EO] n/a E749B 0.98 µg/L 1 µg/L 97.8 60.0 140 ----Nonylphenol monoethoxylates [NP1EO] n/a E749B 12.0 µg/L 20 µg/L 60.1 60.0 140 ----

Page	:
Work Order	:
Client	:
Project	:

20 of 20 WT2330257 Hydrogeology Consulting Services Queensway-Etobicoke

REFER 10 BACK PAGE FOR ALS LOUALINAS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white- Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white- 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form L-845 B-057 MH-530 GC-769	Simian	Released by:			Are samples taken from a Regulated LW System/	Drinking Water	And the state of t	A COLORADO								のないのである	The second	Contraction of the	North States	ALS Sample # (lab use only)	ALS Lab Work Order # (lab use only):	LSD:	PO / AFE:		ccount #		Contact:	Company:	Copy of		Postal Code: NOB 1S0	City/Province: Elora, ON	Street: 25 Wate				Hydro	Report To o	ALS MAR	10		
taken from a Regulated Dri	TP/NI/NI <	Date: Date:	SHIPMENT RELEASE (client use)	I NO	NO	Drinking Water (DW) Samples ¹ (client use)										IN	MM	TA	3	Sample Id (This des	# (lab use only):			Queensway - Etopicoke		Project Information			Copy of Invoice with Report	Same as Report To	0	N	25 Water Street West	Company address below will appear on the final report	905-550-0969	lelmer	Hydrogeology Consulting	Contact and company name	www.alsglobal.com			
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGI 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please	C/ C/ C/ C/	" la 13	E (client use)			use)										MW 5	20		るの	Sample Identification and/or Coordinates (This description will appear on the report)					2022 Price List	ation			I YES I NO	VES NO				ear on the final report				Contact and company name below will appear on the final report			Clair	[nair
m LEGIBLY. By the u , please submit using	MATION	Time: 1			Toronto Storm and Sanitary Sewer Use By-Law	and a second sec	nstructions / Spec	1		1										bordinates the report)	These	(11) 10	A No	in a	AF	-	En	5	Se		Ел	En	En	Se		Qu		al report	Canada Toll Free: 1 800 668 9878	Inchro	Request Form	INT LUSTON
use of this form the u g an Authorized DW	Carl and a second	Received by:	NI		ry Sewer Use By	(electro	to adv												2		ALS Contact:	LOCANON.	Requisitioner.		AFE/Cost Center.	Oil an	Email 2	Email 1 or Fax chrishelmer@hydrog.ca	Select Invoice Distribution:		Email 3	Email 2	Email 1 or Fax chrishelmer@hydrog.ca	Select Distribution:	Compare Results to	Quality Control (QC) Report with Report	Select Report Format:		ee: 1 800 668	Inchreat I offici	et Form	A ALL ALL ALL AND
rser acknowiedges a / COC form.	WI		ITIAL SHIPMEN		-Law	onic COC only)	d on report by cli									1		5	20109129	Date (dd-mmm-yy)	Emily Smith					d Gas Required		rishelmer@hydr	ribution: 🕑 EM	Invoice Distribution			rishelmer@hydr	EMAIL	o Criteria on Report) Report with R		Report Format / Distribution	9878		i aiy uvui	Contraction of the second
ind agrees with the Tr	WHITE - LABORATORY COPY	Date;	INITIAL SHIPMENT RECEPTION (lab use only)			(electronic COC only)	cking on the drop									14:00	11:00	ANNA D	CARGES	Time (hhumm)	Sampler:			times from the	Routing Code:	Oil and Gas Required Fields (client use)		og.ca	MIL MAIL	stribution		-	og.ca	MAIL FAX	e detailt	eport 🛛 YES		/ Distribution		Attox		
			(lab use only)				-down list below	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Sample Type						ISE)	A REAL PROPERTY OF A REAL PROPER		FAX					FAX	w if box checked	NO	D (DIGITAL)			Attix ALS barcode label nere		
530	YELLOW - CLIENT COPY	lime:	- ALA	- Li	Coolin	Frozen Ice Packs	0000									19	19	1.	-	NU			-	-	-	-	-		ER	S		For tests t	Date	(Bus	RIORIT Liness (Co	Days)		Se		(lab use only)		
C Ole an the	LIENT	7		and a	Cooling Initiated	° ₽□		-		-	-	-	-	-	-	×	×	X	×		59	1075		_	<u>.</u>		-		┝	-		hat can no	e and Tin	2 day [P2-50%]	3 day [P3-25%]	day [P4-20%]	Regular [R]	lect Ser		labe		
6- 76	OPY	Received by:	the serve set	の書の	INITIAL COOLER TEMPERATURES *C		SAMP																			- 1	(10			Indicate Filtered (F)		ot be performed accorr	Date and Time Required for all E&P TATs:	2-50%]		1-20%]	2	vice Lavel Below		nere		
report copy.		Land	FINAL SHIPMENT RECEPTION (lab use only)	The second second	RATURES *C	SIF Observations	SAMPLE CONDITION AS RECEIVED (lab use only)																	_						Indicate Filtered (F), Preserved (F) or Filtered and	Analysis Kee	tests that can not be performed according to the service level selecte	SPTATS:	- (Laboratory o	Same Day, We	1 Business d	Standard TAT if received by 3 pm -	Select Service Level Below - Contact your AM to co		Page		
9.21	-	72	RECEP	6.2	1. 128	t Yes	RECEIVI	-	-	+	+	+	-	-	-	+	+	+	+	+		-	-			-		-	╀	and Lines			1	12	Ve	p.	17	18				
UM-288 UM-288 0GG-922	locr	Jar / 20/23	TION (lab us	-	FINAL		ED (lab use c																							annual is it manual		Telephone: +1 519 886 6910			Ş				WT2330257	Waterloo	wironme	
CN-240 SC- 475	2		se only)	6	R TEMPERA	No No	10				-									-		-	-			_	-	-	+	_		519 886 6910	11.4.4.11					000	330		ntal Div	
240		19:30	Time		TURES °C		No. of States	Г												S	AM	P	LI	E	s	0	N	н	0										257		ision	
	ACK 3019 EHOND	3	1	1010				-		1				1						sus	PECTE	DH	AZA	RD	(see	Spe	cial	Instr	ucti	ons)	-								10.02			

APPENDIX G: MECP WATER WELL RECORDS

Water Wel	l Records	5			Frida	ay, November 3, 2			
						1:44:34			
TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ETOBICOKE BOROUGH	17 618088 4830488 W	2013/10 7147						7209961 (C22698) A149616 P	
ETOBICOKE BOROUGH	17 617876 4830485 W	2005/07 7215	1				0003 10	6929335 (Z33936) A015573	
ETOBICOKE BOROUGH	17 618101 4830563 W	2006/08 6902	2	FR 0011			0010 10	6930529 (159988) A050961	0000 BRWN 0001 GREY SILT TILL DNSE 0007 GREY SHLE WTHD HARD 0010 GREY SHLE HARD 0020
ETOBICOKE BOROUGH	17 618181 4830261 W	2011/04 7241						7162685 (M10132) A114406 P	
ETOBICOKE BOROUGH	17 617762 4830615 W	2011/06 7241	2			MT	0007 10	7164261 (Z134284) A116681	BLCK LOAM LOOS 0000 BRWN SAND SILT LOOS 0007 GREY SILT CLAY LOOS 0010 GREY SHLE DNSE 0017
ETOBICOKE BOROUGH	17 617771 4830653 W	2011/06 7241	2			MT	0006 10	7164262 (Z134285) A118677	GREY SAND GRVL LOOS 0000 BRWN SILT SAND LOOS 0007 GREY SILT CLAY LOOS 0010 GREY SHLE DNSE 0016
ETOBICOKE BOROUGH	17 617921 4830610 W	2012/04 7241	2			MT	0007 5	7181266 (Z148189) A129348	GREY CMTD 0001 BRWN SAND GRVL LOOS 0007 GREY SILT SANE LOOS 0009 GREY SHLE DNSE 0012
ETOBICOKE BOROUGH	17 617925 4830585 W	2012/04 7241	2			MT	0006 7	7181267 (Z148190) A129349	BLCK CMTD 0001 BRWN SAND GRVL LOOS 0011 GREY SHLE DNSE 0012
ETOBICOKE BOROUGH	17 617928 4830655 W	2012/04 7241	2			MT	0007 5	7181268 (Z148188) A129347	BLCK CMTD 0000 BRWN SAND GRVL LOOS 0001 BRWN SAND SILT LOOS 0009 GREY SHLE DNSE 0012
ETOBICOKE BOROUGH	17 617998 4830541 W	2012/09 7241				MT		7190026 (Z158529) A	
ETOBICOKE BOROUGH	17 617981 4830542 W	2012/09 7241				MT		7190027 (Z158556) A	
ETOBICOKE BOROUGH	17 617932 4830424 W	2004/05 6607	1.97	UK 0010			0015 5	6928026 (Z14471) A011869	GREY TILL 0005 GREY ROCK SHLE 0020
ETOBICOKE BOROUGH	17 617985 4830550 W	2012/09 7241				MT		7190029 (Z158531) A	
ETOBICOKE BOROUGH	17 617790 4830558 W	2020/11 6946						7376097 (Z349999) A304087 P	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ETOBICOKE BOROUGH	17 617764 4830291 W	2014/11 7320	2.00			MT	0003 10	7232715 (Z198874) A168050	BLCK FILL GRVL 0001 BRWN GRVL FILL 0003 BRWN SILT SAND 0010 BRWN SILT SHLE FCRD 0013
ETOBICOKE BOROUGH	17 617804 4830314 W	2014/11 7320	2.00			MT	0003 10	7232718 (Z198872) A168031	BLCK FILL GRVL 0001 BRWN GRVL FILL 0003 BRWN SILT SAND 0010 BRWN SILT SHLE FCRD 0013
ETOBICOKE BOROUGH	17 617806 4830291 W	2014/11 7320	2.00				0004 10	7232719 (Z198869) A168032	BLCK FILL GRVL 0001 BRWN GRVL FILL 0003 BRWN SILT SAND 0011 BRWN SILT SHLE FCRD 0014
ETOBICOKE BOROUGH	17 617775 4830325 W	2014/11 7320	2.00			MT	0003 10	7232720 (Z198871) A168033	GREY 0001 GREY GRVL FILL 0003 BRWN SILT SAND 0010 BRWN SILT SHLE FCRD 0013
ETOBICOKE BOROUGH	17 617768 4830325 W	2014/11 7320	2.00			MT	0004 10	7232721 (Z198870) A147417	GREY 0001 GREY GRVL FILL 0003 BRWN SILT SAND 0011 BRWN SILT SHLE FCRD 0014
ETOBICOKE BOROUGH	17 618082 4830313 W	2014/12 7215	2	UT 0004			0010 5	7236004 (Z183571) A176992	BRWN SAND WBRG 0000 GREY CLAY SHLE DRY 0007
ETOBICOKE BOROUGH	17 617802 4830280 W	2015/09 7147						7248032 (C30871) A177878 P	
ETOBICOKE BOROUGH	17 617772 4830287 W	7147						7310493 (C40516) A168632 P	
ETOBICOKE BOROUGH	17 618140 4830221 W	2018/09 7241	2			MT	0010 10	7326567 (Z298343) A254520	BLCK 0000 BRWN CLAY SILT 0008 GREY SHLE 0020
ETOBICOKE BOROUGH	17 618166 4830665 W	2018/09 7241	2			MT	0010 10	7326568 (Z298345) A254518	BLCK 0000 BRWN CLAY SILT 0008 GREY SHLE 0020
ETOBICOKE BOROUGH	17 617910 4830548 W	2012/09 7241						7190028 (Z158444) A	

Notes:

UTM: DTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number CASING DIA: . Dasing diameter in inches WATER: Dinit of Depth in Fee. See Table 4 for Meaning of Code

1. Core Material and Descriptive terms

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet WELL: WEL (AUDIT #) Well Tag . Abandonment; P: Partial Data Entry Only FORMATION: See Table 1 and 2 for Meaning of Code

			-						
Code	Description	Code	Description	Code	Description	Code	Description	Code	Description
BLDR	BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
BSLT	BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD	COARSE-GRAINED	FGVL	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
CGVL	COARSE GRAVEL	FILL	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
CHRT	CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
CLAY	CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
CLN C	CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
CLYY	CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	TILL	TILL
CMTD	CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG	CONGLOMERATE	GRNT	GRANITE	MGVL	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
CRYS	CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
CSND	COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL	DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
DLMT	DOLOMITE	GVLY	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
DNSE	DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		
DRTY	DIRTY	HARD	HARD	PEAT	PEAT	SNDS	SANDSTONE		
DRY	DRY	HPAN	HARDPAN	PGVL	PEA GRAVEL	SNDY	SANDYOAPSTONE		

2. Core Color	3. Well Use
Code Description	Code Description Code Description
WHIT WHITE	DO Domestic OT Other
GREY GREY	ST Livestock TH Test Hole
BLUE BLUE	IR Irrigation DE Dewatering
GREN GREEN	IN Industrial MO Monitoring
YLLW YELLOW	CO Commercial MT Monitoring TestHole
BRWN BROWN	MN Municipal
RED RED	PS Public
BLCK BLACK	AC Cooling And A/C
BLGY BLUE-GREY	NU Not Used

4. Water Detail

Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
UK	Unknown		