

November 9, 2023

1370443 Ontario Limited c/o RSM LLP 11 King Street West, Suite 700 Toronto, Ontario

Attn: John Regan

# Re: Limited Soil Investigation 1543 – 1551 The Queensway and 66 & 76 Fordhouse Boulevard Toronto (Etobicoke), Ontario Project No. 18494

## 1. INTRODUCTION

Keystone Environmental Ltd. (Keystone Environmental) is pleased to provide 1370443 Ontario Limited c/o RSM LLP (the Client) with this technical letter summarizing the results of the limited soil investigation program completed by Keystone Environmental during the geotechnical investigation conducted by Sola Engineering (Sola) at the properties referred to as 1543, 1545, 1547, 1549, 1551 The Queensway and 66 & 76 Fordhouse Boulevard, Toronto (Etobicoke), Ontario (collectively referred to as "the Site").

## 2. BACKGROUND INFORMATION, SITE SETTING AND OBJECTIVE

The Site is located in Toronto, Ontario (Etobicoke) and comprises seven municipal lots described as follows:

- > 1543 The Queensway single-storey detached residential building
- 1545 The Queensway two-storey detached commercial building
- > 1547 the Queensway two-storey detached residential building
- 1549 The Queensway single-storey commercial / industrial building
- > 1551 the Queensway two-storey detached residential building
- **66** Fordhouse Boulevard occupied commercial building (Hello Fresh)
- 76 Fordhouse Boulevard vacant commercial / industrial building

The seven lots which form the Site are located between The Queensway and Fordhouse Boulevard, slightly west of Algie Avenue. Currently, the buildings appear vacant with the exception of 1545 The Queensway and 66 Fordhouse Boulevard which is occupied by a commercial food preparation and distribution

Suite 320-4400 Dominion Street Burnaby, BC V5G 4G3 | Canada Ph: 604.430.0671 Fax: 604.430.0672 keyinfo@keystoneenvironmental.ca keystoneenvironmental.ca operation (Hello Fresh). The portions of the Site which are not occupied by the Site buildings are primarily occupied by asphalt parking with some limited gravel surface treatments and landscaped areas.

It is understood by Keystone Environmental that the Client is considering a future residential development for the Site, which would include the demolition of the existing buildings and the construction of one 11-storey mid-rise building and upwards of three residential condominium towers, ranging in height between 30 to 50 stories. The development concept would also include three-levels of underground parking under each building; vehicular pick-up and drop-off spaces; and greenspaces, including a parkette and a park. As part of future site plan agreement provisions with the City of Toronto for the proposed development, the Client engaged Sola Engineering of Vaughan, Ontario to conduct a geotechnical investigation. As part of the geotechnical investigations, the Client requested that Keystone Environmental coordinate the collection of a select number of soil samples from select geotechnical boreholes to gather a baseline understanding of the soil conditions at the Site with regards to select chemical parameters and applicable Site Condition Standards (SCS) provided under the Ministry of the Environment, Conservation and Parks (MECP) Ontario Regulation (O. Reg.) 153/04 (as amended) supporting document, titled Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the *Environmental Protection Act*", dated April 15, 2011.

It should be noted that this limited soil investigation is intended to provide a baseline assessment of soil conditions at the Site with respect to select potential contaminants of concern (PCOCs) at select borehole locations which were advanced at the Site as part of Sola's geotechnical investigation. This report is not intended to serve as a comprehensive Phase II / Two Environmental Site Assessment (ESA) for the assessment of areas of potential environmental concern (APECs), typically identified as part of a Phase I / One ESA. In the event a comprehensive Phase II / Two ESA is required by the Client at a later date to support either due diligence processes or regulatory processes such as a Record of Site Condition (RSC) under Ontario Regulation (O. Reg.) 153/04 (as amended), it is recommended that the Client engage a qualified consultant to perform a Phase I / One ESA prior to proceeding with a detailed Phase II / Two ESA.

# 2.1 General Limitations

Findings presented in this report are based on Keystone Environmental's Site Investigation. Consequently, while findings and conclusions documented in this report have been prepared in a manner consistent with that level of care and skill normally exercised by other members of the environmental science and engineering profession practising under similar circumstances in the area at the time of the performance of the work, this report is not intended nor is it able to provide a totally comprehensive review of past or present Site environmental conditions. This report is intended to provide information to reduce, but not necessarily eliminate, uncertainty regarding the potential for contamination of a property. Where this potential has been identified, the further reduction of uncertainty requires the performance of supplemental soil and /or groundwater investigations.

This report has been prepared solely for the internal use of 1370443 Ontario Limited c/o RSM LLP, pursuant with the Consultant Service Agreement between 1370443 Ontario Limited c/o RSM LLP and Keystone Environmental Ltd., dated September 1, 2023. By using the report, 1370443 Ontario Limited c/o RSM LLP agrees that they will review and use the report in its entirety. Any use which other parties make of this report, or any reliance on or decisions made based on it, are the responsibility of such parties. Keystone



Environmental Ltd. accepts no responsibility for damages, if any, suffered by other parties as a result of decisions made or actions based on this report.

# **3. SCOPE OF WORK**

To meet the objective of the Limited Soil Investigation Program, Keystone Environmental developed the following scope of work.

- Review the public and private utility clearances for the work area retained by Sola.
- > Observe the advancement of select boreholes advanced at the Site by Sola's drilling contractor.
- Collect at least one "worst case" soil sample from select boreholes advanced at the Site and submit to the project laboratory for analysis of select potential contaminants of concern (PCOCs) on a regular five-day turnaround time (TAT).
- > Prepare a Limited Soil Investigation Report, including the following:
  - Site Plan showing the borehole locations;
  - Sampling methodology summary;
  - Summary of general soil observations and analytical results; and
  - Certificates of Analysis.

## 4. INVESTIGATIVE PROGRAM

The following sections describe the investigation methodologies employed by Keystone Environmental during the Limited Soil Investigation Program. The field investigation methods were conducted in general accordance with O. Reg. 153/04 (as amended), Keystone Environmental's standard operating procedures (SOPs), and industry standard practices.

# 4.1 Applicable Site Condition Standards

The applicable provincial soil and groundwater standards applied for comparison of soil and groundwater analytical results are contained in the MECP document titled "Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the *Environmental Protection Act*", dated April 15, 2011<sup>1</sup>.

Based on the selection process conducted in accordance with O. Reg. 153/04 (as amended), the applicable SCS are the Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, with Residential / Parkland / Institutional (RPI) property use and coarse textured soil conditions.

The rationale for the selection of the Table 3 SCS is further described below.

# **Environmentally Sensitive Areas**:

• The Site is not located within an area of natural significance;

<sup>&</sup>lt;sup>1</sup> <u>https://www.ontario.ca/page/soil-ground-water-and-sediment-standards-use-under-part-xv1-environmental-protection-act</u>



- The Site does not include land that is within 30 m of an area of natural significance or part of such an area; and
- The pH of soils is assumed to be within the acceptable range of 5 to 9 for surface soils (< 1.5 metres below ground surface [mbgs]) and 5 to 11 for sub-surface soils (> 1.5 mbgs).
- **Water Bodies**: The Site does not include land that is within 30 m of a permanent water body.
- Non-Potable / Potable Groundwater Conditions: No potable water wells were observed on the Site at the time of the Site reconnaissance; potable water is supplied to the Site by the City of Toronto municipal system which obtains water from Lake Ontario.
- Current and Proposed Future Property Uses: The current property use of the Site is commercial / industrial and the future property use as part of future Site redevelopment is residential.
- **Soil Texture:** Observations of soil type made during Sola's investigation indicated that more than 1/3 of the soil at the Site would consist of medium and fine textured soil (i.e., clayey silt till, silt till).
- Shallow Soil Property: The Site is not considered a shallow soil property as defined by O. Reg. 153/04 (as amended). Based on available borehole stratigraphy information provided by Sola, more than 2/3 of the Site has more than 2 m of overburden above bedrock.

# 4.2 Utility Clearances

Sola contacted Ontario One Call to initiate utility clearances with all public utility providers of the Site. In addition, Sola retained the services of a private utility locator to clear services within the proposed work areas. Keystone Environmental reviewed the utility locates with Sola on September 12, 2023. Copies of the public and private utility clearance documents are retained on file by Sola.

# 4.3 Borehole Drilling

As per Sola's geotechnical investigation scope of work, a total of 12 boreholes were advanced at the Site (see Attachment A) between September 11 – 15, 2023 by Terra Firma Environmental Services Ltd. All boreholes advanced at the Site were completed under full-time supervision of a qualified Sola Technician. A truck mounted drill rig, equipped with auguring and spilt spoon sampling capabilities was used to advance the 12 boreholes. The boreholes were advanced through the existing ground surface to depths ranging from approximately1.5 m to 12.9 m below the ground surface. In support of the limited soil sampling activities performed by Keystone Environmental, a Keystone Environmental representative was present on the Site on September 12, 13 and 15, 2023, to observe the advancement of boreholes BH1, BH2, BH3, BH5, BH6 BH8, BH9, BH10, and BH12 and collect soil samples from select boreholes for laboratory analysis of select parameters.

The borehole logs for the subject boreholes observed by Keystone Environmental are provided under separate cover within Sola's Geotechnical Investigation report, titled "*Geotechnical Investigation*, *QEW* + 427 *Development, 1543, 1545, 1547, 1549, 1551 The Queensway & 66 And 76 Fordhouse Boulevard Etobicoke, Ontario*", dated October 13, 2023.



## 4.4 Soil Sample Collection

Soil samples were collected from the boreholes in semi-continuous intervals *via* stainless steel spilt spoon samplers. Upon advancement of the sampler at each sampling interval, the sampler was removed from the borehole and opened to enable the logging of soil characteristics and sample collection. Specifically, soil conditions were logged by Sola and Keystone Environmental personnel for soil characteristics (soil type, colour, moisture, etc.) and where any discernable olfactory and physical evidence of contamination (e.g., staining, sheens, etc.) was present.

Following the logging of the soil conditions, soil samples selected for analysis by Keystone Environmental were placed in laboratory supplied glass containers and were placed immediately in coolers equipped with ice to initiate cooling. Samples were maintained in a cold state until submitted to the project laboratory.

## 4.5 Soil Laboratory Analysis

A summary of the soil samples collected by Keystone Environmental for laboratory analysis of select parameters is provided in the following table.

| Location     | Sample ID | Approximate<br>Depth (mbg) | PHC F1 – F4<br>& BTEX | VOCs (incl.<br>BTEX) | Metals       | PAHs         |
|--------------|-----------|----------------------------|-----------------------|----------------------|--------------|--------------|
|              | BH1-SS2   | 0.1 – 0.8                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH1          | BH1-SS4   | 2.3 – 3.0                  | $\checkmark$          | $\checkmark$         | -            | -            |
| BH2          | BH2-SS2   | 0.8 – 1.2                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
|              | BH3-SS2   | 0.8 – 1.2                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH3          | BH3-SS4   | 2.2 – 2.6                  | $\checkmark$          | $\checkmark$         | -            | -            |
| DUIC         | BH5-SS2   | 0.8 – 1.2                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH5          | BH5-SS4   | 2.3 – 2.7                  | $\checkmark$          | $\checkmark$         | -            | -            |
| DUIC         | BH6-SS1   | 0.1 – 0.5                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH6          | BH6-SS4   | 2.0 – 2.1                  | $\checkmark$          | $\checkmark$         | -            | -            |
| <b>B</b> U 0 | BH8-SS2   | 0.7 – 1.2                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH8          | BH8-SS4   | 2.2 – 2.5                  | $\checkmark$          | $\checkmark$         | -            | -            |
| BUIO         | BH9-SS1   | 0.1 – 0.6                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH9          | BH9-SS3   | 1.5 – 1.8                  | $\checkmark$          | $\checkmark$         | -            | -            |
| BL 14 O      | BH10-SS1  | 0.5 – 0.8                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH10         | BH10-SS3  | 1.5 – 2.0                  | $\checkmark$          | $\checkmark$         | -            | -            |
| DU 11 D      | BH12-SS1  | 0.5 – 0.8                  | -                     | -                    | $\checkmark$ | $\checkmark$ |
| BH12         | BH12-SS3  | 1.5 – 2.0                  | $\checkmark$          | $\checkmark$         | -            | -            |



| Location                          | Sample ID           | Approximate<br>Depth (mbg) | PHC F1 – F4<br>& BTEX | VOCs (incl.<br>BTEX) | Metals | PAHs |  |  |
|-----------------------------------|---------------------|----------------------------|-----------------------|----------------------|--------|------|--|--|
| Notes & Abbreviat                 | tions:              |                            |                       |                      |        |      |  |  |
| Metres below grade                | (mbg)               |                            |                       |                      |        |      |  |  |
| Petroleum Hydrocarb               | oon (PHC)           |                            |                       |                      |        |      |  |  |
| Benzene, Toluene, Etl             | hylbenzene, Xylenes | (BTEX)                     |                       |                      |        |      |  |  |
| Volatile Organic Compounds (VOCs) |                     |                            |                       |                      |        |      |  |  |
| Polycyclic Aromatic H             | lydrocarbons (PAHs) | )                          |                       |                      |        |      |  |  |

All samples were submitted to Bureau Veritas Canada Inc. (Bureau Veritas), a Standards Council of Canada (SCC) accredited laboratory located in Mississauga, Ontario, under signed chain-of-custody.

# 4.6 Quality Assurance/Quality Control

# 4.6.1 Field QA/QC

Keystone Environmental employed the following field measures as part of their quality assurance and quality control (QA/QC) program to ensure sample integrity and reduce the potential for cross-contamination of samples.

- New nitrile gloves were used for each sample collected.
- Sampling equipment was cleaned between sampling points.
- Sampling tools were cleaned with Alconox<sup>™</sup> soap and distilled water between samples.
- Samples were placed in laboratory-supplied containers with preservatives (as applicable) suitable for the analysis.
- Samples were labelled and stored in a cooler with ice while in the field and during transport to the laboratory.
- Samples were submitted for analyses under chain of custody documentation to Bureau Veritas, a SCC accredited laboratory located in Mississauga, Ontario.

# 4.6.2 Laboratory QA/QC

QA/QC measures performed by BV included the analysis of laboratory duplicate samples (DUP), laboratory control samples (LCS), matrix spikes (MS), method blanks (MB), internal reference material (IRM), surrogate recoveries (SR), and the use of analytical methods in accordance with SCC accreditation standards. Laboratory QA/QC is documented in the Certificates of Analysis provided in Attachment B. A review of the laboratory QA/QC data was performed by Keystone Environmental upon receipt of the Certificates of Analysis.



## 5. INVESTIGATIVE RESULTS

## 5.1 Surficial Geology and Field Observations

The following is a general description of the soil stratigraphy observed in the boreholes advanced at the Site and supervised by Keystone Environmental. Note, the borehole logs for the subject boreholes observed by Keystone Environmental are under separate cover within Sola's Geotechnical Investigation report, titled "Geotechnical Investigation, QEW + 427 Development, 1543, 1545, 1547, 1549, 1551 The Queensway & 66 And 76 Fordhouse Boulevard Etobicoke, Ontario", dated October 13, 2023.

- Groundcover was generally comprised of asphalt.
- A granular fill material (i.e., gravel sub-base), ranging is thickness between 380 millimetres (mm) to 690 mm, was observed beneath the asphalt.
- Fill material, comprising a sandy silt, clayey silt and silty clay, was encountered at most borehole locations and extended to depths between 1.5 to 2.3 m.
- Native material (i.e., clayey silt / silty clay till) was encountered beneath the fill in all boreholes advanced past the fill material. This native material extended to the shale bedrock which was generally encountered at depths between 2.3 – 4.6 m.
- Weathered shale was encountered within the Project Area at select borehole locations at depths ranging between 1.5 and 3.0 mbgs.
- No visual or olfactory evidence of impact was observed in any of the soil samples collected from any of the sampling locations observed by Keystone Environmental.

## 5.2 Soil Analytical Results

A total of 17 soil samples were collected from boreholes BH1, BH2, BH3, BH5, BH6 BH8, BH9, BH10, and BH12 and were analysed for select parameters including PHCs F1 – F4, BTEX, VOCs, metals, and / or PAHs (see table above for analysis schedule). The analytical results are provided within the laboratory certificates of analysis attached to this letter report (see Attachment B).

In summary, the analytical results for the soil samples collected indicate that all parameters analyzed meet the MECP Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, with Residential / Parkland / Institutional property use and coarse textured soil conditions.

## 5.3 Laboratory QA/QC Results

Samples were submitted for analyses under chain of custody documentation to Bureau Veritas in Mississauga, Ontario. Bureau Veritas is a Standards Council of Canada certified laboratory. In addition to field QC samples, the laboratory conducted their own internal QA/QC measures. The laboratory QA/QC measures included method blanks, duplicate analysis, and spike and matrix spike recoveries which were reviewed.



In summary, the method blanks, duplicate analysis, and spike and matrix spike recoveries were all within the acceptable limits. Based on the laboratory QA/QC results, the data is considered reliable. The laboratory completed QA/QC is provided in the Certificates of Analysis in Attachment B.

# 6. CONCLUSIONS AND RECOMMENDATIONS

Based on the analytical results it is concluded that the samples analysed meet the MECP's Table 3 SCS for residential property use and coarse textured soil conditions for the specific parameters analysed. As such, there does not appear to be any environmental concerns within the assessed areas as it relates to the applicable MECP Table 3 SCS and the analysed PCOCs.

As stated within Section 2 of this report, this report is not intended to serve as a comprehensive Phase II / Two ESA and is not sufficient for the purposes of supporting a RSC submission under O. Reg. 153/04 (as amended). In the event a comprehensive Phase II / Two ESA is required by the Client at a later date to support either due diligence processes or regulatory processes, such as a RSC submission under O. Reg. 153/04 (as amended), the following is recommended:

- Engage a qualified consultant to perform a Phase I / One ESA prior to proceeding with a detailed Phase II / Two ESA.
- Based on the findings of the Phase I / One ESA, and if required, engage a qualified consultant to develop a detailed Phase II / Two ESA work plan, complete with a sampling and analysis plan (SAP) which details the methods and plan to assess any identified APECs at the Site.
- Engage a qualified consultant to perform a Phase II / Two ESA in accordance with the work plan and the SAP and prepare a Phase II / Two ESA report in accordance with either the Canadian Standard Association (CSA) Z769-00 (R2023) Phase II Environmental Site Assessment standards or O. Reg. 153/04 (as amended), which ever is deemed necessary to meet the project objectives.



# 7. CLOSURE

We trust the information provided within this report meets your current requirements. If you require clarification of any part of this work plan, please do not hesitate to contact the undersigned.

Sincerely,

DRAFT

Jeff Muir, P.Geo. (Ltd.), QP<sub>ESA</sub> Director, Ontario Operations

## ATTACHMENTS:

- Sola Borehole Location Plan
- Certificates of Analysis



# 8. **REFERENCES**

- Geotechnical Investigation, QEW + 427 Development, 1543, 1545, 1547, 1549, 1551 The Queensway & 66 And 76 Fordhouse Boulevard Etobicoke, Ontario, prepared by Sola Engineering, dated October 13, 2023
- Canadian Standard Association (CSA)-Z769-00 (R2023) Phase II Environmental Site Assessment Standard.
- Ontario Regulation 153/04 (as amended), Record of Site Condition, Part XV.1 of the Act, under Environmental Protection Act, R.S.O. 1990, c. E.19. Ontario Ministry of the Environment, Conservation and Parks, April 2011 (MECP, 2011).
- Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the *Environmental Protection Act*, Ministry of the Environment, Conservation and Parks, dated April 15, 2011.



# ATTACHMENT A SOLA BOREHOLE PLAN



# ATTACHMENT B CERTIFICATES OF ANALYSIS



Your Project #: 18494 Site#: TORONTO Site Location: 66 FORDHOUSE BLVD Your C.O.C. #: n/a

#### Attention: Jeff Muir

Keystone Environmental 6733 Mississauga Road Suite 700 Mississauga, ON Canada

> Report Date: 2023/09/19 Report #: R7820718 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

## BUREAU VERITAS JOB #: C3R9861

#### Received: 2023/09/12, 18:03

Sample Matrix: Soil # Samples Received: 6

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Methylnaphthalene Sum                    | 3        | N/A        | 2023/09/15 | CAM SOP-00301     | EPA 8270D m          |
| 1,3-Dichloropropene Sum                  | 3        | N/A        | 2023/09/18 |                   | EPA 8260C m          |
| Petroleum Hydrocarbons F2-F4 in Soil (1) | 3        | 2023/09/14 | 2023/09/15 | CAM SOP-00316     | CCME CWS m           |
| Acid Extractable Metals by ICPMS         | 3        | 2023/09/15 | 2023/09/15 | CAM SOP-00447     | EPA 6020B m          |
| Moisture                                 | 6        | N/A        | 2023/09/14 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PAH Compounds in Soil by GC/MS (SIM)     | 1        | 2023/09/14 | 2023/09/14 | CAM SOP-00318     | EPA 8270E            |
| PAH Compounds in Soil by GC/MS (SIM)     | 2        | 2023/09/14 | 2023/09/15 | CAM SOP-00318     | EPA 8270E            |
| Volatile Organic Compounds and F1 PHCs   | 3        | N/A        | 2023/09/17 | CAM SOP-00230     | EPA 8260C m          |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's

Page 1 of 19



Your Project #: 18494 Site#: TORONTO Site Location: 66 FORDHOUSE BLVD Your C.O.C. #: n/a

#### **Attention: Jeff Muir**

Keystone Environmental 6733 Mississauga Road Suite 700 Mississauga, ON Canada

> Report Date: 2023/09/19 Report #: R7820718 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### **BUREAU VERITAS JOB #: C3R9861**

#### Received: 2023/09/12, 18:03

Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Kudrat Bajwa, B.Sc., Project Manager Email: Kudrat.Bajwa@bureauveritas.com Phone# (905)817-5755

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



## **O.REG 153 ICPMS METALS (SOIL)**

| Bureau Veritas ID                     |       | WYT844     | WYT846     | WYT846             | WYT848     |       |          |
|---------------------------------------|-------|------------|------------|--------------------|------------|-------|----------|
| Sampling Date                         |       | 2023/09/12 | 2023/09/12 | 2023/09/12         | 2023/09/12 |       |          |
|                                       |       | 15:00      | 15:30      | 15:30              | 16:00      |       |          |
| COC Number                            |       | n/a        | n/a        | n/a                | n/a        |       |          |
|                                       | UNITS | BH3-SS2    | BH9-SS1    | BH9-SS1<br>Lab-Dup | BH10-SS1   | RDL   | QC Batch |
| Metals                                |       |            |            |                    |            |       |          |
| Acid Extractable Antimony (Sb)        | ug/g  | <0.20      | <0.20      | <0.20              | <0.20      | 0.20  | 8918742  |
| Acid Extractable Arsenic (As)         | ug/g  | 2.1        | 4.7        | 4.7                | 3.8        | 1.0   | 8918742  |
| Acid Extractable Barium (Ba)          | ug/g  | 31         | 87         | 85                 | 61         | 0.50  | 8918742  |
| Acid Extractable Beryllium (Be)       | ug/g  | <0.20      | 0.49       | 0.48               | 0.66       | 0.20  | 8918742  |
| Acid Extractable Boron (B)            | ug/g  | <5.0       | 6.4        | 6.4                | 5.4        | 5.0   | 8918742  |
| Acid Extractable Cadmium (Cd)         | ug/g  | <0.10      | 0.14       | 0.13               | <0.10      | 0.10  | 8918742  |
| Acid Extractable Chromium (Cr)        | ug/g  | 5.0        | 18         | 17                 | 22         | 1.0   | 8918742  |
| Acid Extractable Cobalt (Co)          | ug/g  | 1.6        | 7.8        | 7.7                | 11         | 0.10  | 8918742  |
| Acid Extractable Copper (Cu)          | ug/g  | 6.9        | 36         | 34                 | 23         | 0.50  | 8918742  |
| Acid Extractable Lead (Pb)            | ug/g  | 4.9        | 17         | 16                 | 12         | 1.0   | 8918742  |
| Acid Extractable Molybdenum (Mo)      | ug/g  | <0.50      | 0.52       | 0.53               | <0.50      | 0.50  | 8918742  |
| Acid Extractable Nickel (Ni)          | ug/g  | 3.5        | 17         | 17                 | 23         | 0.50  | 8918742  |
| Acid Extractable Selenium (Se)        | ug/g  | <0.50      | <0.50      | <0.50              | <0.50      | 0.50  | 8918742  |
| Acid Extractable Silver (Ag)          | ug/g  | <0.20      | <0.20      | <0.20              | <0.20      | 0.20  | 8918742  |
| Acid Extractable Thallium (Tl)        | ug/g  | <0.050     | 0.11       | 0.10               | 0.16       | 0.050 | 8918742  |
| Acid Extractable Uranium (U)          | ug/g  | 0.70       | 0.45       | 0.46               | 0.49       | 0.050 | 8918742  |
| Acid Extractable Vanadium (V)         | ug/g  | 9.3        | 25         | 25                 | 32         | 5.0   | 8918742  |
| Acid Extractable Zinc (Zn)            | ug/g  | 18         | 57         | 56                 | 52         | 5.0   | 8918742  |
| RDL = Reportable Detection Limit      |       | -          |            | -                  |            |       |          |
| QC Batch = Quality Control Batch      |       |            |            |                    |            |       |          |
| Lab Dup - Laboratory Initiated Duplic | ato   |            |            |                    |            |       |          |

Lab-Dup = Laboratory Initiated Duplicate



## **O.REG 153 PAHS (SOIL)**

| Bureau Veritas ID            |       | WYT844     | WYT846     | WYT848     |        |          |
|------------------------------|-------|------------|------------|------------|--------|----------|
| Sampling Data                |       | 2023/09/12 | 2023/09/12 | 2023/09/12 |        |          |
| Sampling Date                |       | 15:00      | 15:30      | 16:00      |        |          |
| COC Number                   |       | n/a        | n/a        | n/a        |        |          |
|                              | UNITS | BH3-SS2    | BH9-SS1    | BH10-SS1   | RDL    | QC Batch |
| Calculated Parameters        |       |            |            |            |        |          |
| Methylnaphthalene, 2-(1-)    | ug/g  | <0.0071    | <0.0071    | <0.0071    | 0.0071 | 8912430  |
| Polyaromatic Hydrocarbons    |       |            | •          | •          |        |          |
| Acenaphthene                 | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| Acenaphthylene               | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| Anthracene                   | ug/g  | <0.0050    | 0.0078     | <0.0050    | 0.0050 | 8915775  |
| Benzo(a)anthracene           | ug/g  | <0.0050    | 0.028      | 0.010      | 0.0050 | 8915775  |
| Benzo(a)pyrene               | ug/g  | <0.0050    | 0.027      | 0.012      | 0.0050 | 8915775  |
| Benzo(b/j)fluoranthene       | ug/g  | <0.0050    | 0.037      | 0.015      | 0.0050 | 8915775  |
| Benzo(g,h,i)perylene         | ug/g  | <0.0050    | 0.026      | 0.019      | 0.0050 | 8915775  |
| Benzo(k)fluoranthene         | ug/g  | <0.0050    | 0.014      | 0.0052     | 0.0050 | 8915775  |
| Chrysene                     | ug/g  | <0.0050    | 0.024      | 0.0087     | 0.0050 | 8915775  |
| Dibenzo(a,h)anthracene       | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| Fluoranthene                 | ug/g  | <0.0050    | 0.062      | 0.019      | 0.0050 | 8915775  |
| Fluorene                     | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| Indeno(1,2,3-cd)pyrene       | ug/g  | <0.0050    | 0.021      | 0.011      | 0.0050 | 8915775  |
| 1-Methylnaphthalene          | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| 2-Methylnaphthalene          | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| Naphthalene                  | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 8915775  |
| Phenanthrene                 | ug/g  | <0.0050    | 0.037      | 0.0086     | 0.0050 | 8915775  |
| Pyrene                       | ug/g  | <0.0050    | 0.056      | 0.018      | 0.0050 | 8915775  |
| Surrogate Recovery (%)       |       |            |            |            |        |          |
| D10-Anthracene               | %     | 88         | 87         | 89         |        | 8915775  |
| D14-Terphenyl (FS)           | %     | 95         | 94         | 96         |        | 8915775  |
| D8-Acenaphthylene            | %     | 76         | 76         | 77         |        | 8915775  |
| RDL = Reportable Detection   | Limit |            |            |            |        |          |
| QC Batch = Quality Control B | atch  |            |            |            |        |          |



## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                   |       | WYT845     | WYT847     | WYT849     |        |          |
|-------------------------------------|-------|------------|------------|------------|--------|----------|
| Sampling Date                       |       | 2023/09/12 | 2023/09/12 | 2023/09/12 |        |          |
|                                     |       | 15:00      | 15:30      | 16:00      |        |          |
| COC Number                          |       | n/a        | n/a        | n/a        |        |          |
|                                     | UNITS | BH3-SS4    | BH9-SS3    | BH10-SS3   | RDL    | QC Batch |
| Calculated Parameters               |       |            |            |            |        |          |
| 1,3-Dichloropropene (cis+trans)     | ug/g  | <0.050     | <0.050     | <0.050     | 0.050  | 8912431  |
| Volatile Organics                   |       |            | •          |            |        |          |
| Acetone (2-Propanone)               | ug/g  | <0.49      | <0.49      | <0.49      | 0.49   | 8919789  |
| Benzene                             | ug/g  | <0.0060    | <0.0060    | <0.0060    | 0.0060 | 8919789  |
| Bromodichloromethane                | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Bromoform                           | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Bromomethane                        | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Carbon Tetrachloride                | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Chlorobenzene                       | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Chloroform                          | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Dibromochloromethane                | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| 1,2-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| 1,3-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| 1,4-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Dichlorodifluoromethane (FREON 12)  | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| 1,1-Dichloroethane                  | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| 1,2-Dichloroethane                  | ug/g  | <0.049     | <0.049     | <0.049     | 0.049  | 8919789  |
| 1,1-Dichloroethylene                | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| cis-1,2-Dichloroethylene            | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| trans-1,2-Dichloroethylene          | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| 1,2-Dichloropropane                 | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| cis-1,3-Dichloropropene             | ug/g  | <0.030     | <0.030     | <0.030     | 0.030  | 8919789  |
| trans-1,3-Dichloropropene           | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Ethylbenzene                        | ug/g  | <0.010     | <0.010     | <0.010     | 0.010  | 8919789  |
| Ethylene Dibromide                  | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Hexane                              | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Methylene Chloride(Dichloromethane) | ug/g  | <0.049     | <0.049     | <0.049     | 0.049  | 8919789  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/g  | <0.40      | <0.40      | <0.40      | 0.40   | 8919789  |
| Methyl Isobutyl Ketone              | ug/g  | <0.40      | <0.40      | <0.40      | 0.40   | 8919789  |
| Methyl t-butyl ether (MTBE)         | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| Styrene                             | ug/g  | <0.040     | <0.040     | <0.040     | 0.040  | 8919789  |
| RDL = Reportable Detection Limit    |       |            |            | -          | •      | -        |
| QC Batch = Quality Control Batch    |       |            |            |            |        |          |



# O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                 |       | WYT845     | WYT847     | WYT849     |       |          |
|-----------------------------------|-------|------------|------------|------------|-------|----------|
| Sampling Data                     |       | 2023/09/12 | 2023/09/12 | 2023/09/12 |       |          |
| Sampling Date                     |       | 15:00      | 15:30      | 16:00      |       |          |
| COC Number                        |       | n/a        | n/a        | n/a        |       |          |
|                                   | UNITS | BH3-SS4    | BH9-SS3    | BH10-SS3   | RDL   | QC Batch |
| 1,1,1,2-Tetrachloroethane         | ug/g  | <0.040     | <0.040     | <0.040     | 0.040 | 8919789  |
| 1,1,2,2-Tetrachloroethane         | ug/g  | <0.040     | <0.040     | <0.040     | 0.040 | 8919789  |
| Tetrachloroethylene               | ug/g  | <0.040     | <0.040     | <0.040     | 0.040 | 8919789  |
| Toluene                           | ug/g  | <0.020     | <0.020     | <0.020     | 0.020 | 8919789  |
| 1,1,1-Trichloroethane             | ug/g  | <0.040     | <0.040     | <0.040     | 0.040 | 8919789  |
| 1,1,2-Trichloroethane             | ug/g  | <0.040     | <0.040     | <0.040     | 0.040 | 8919789  |
| Trichloroethylene                 | ug/g  | <0.010     | <0.010     | <0.010     | 0.010 | 8919789  |
| Trichlorofluoromethane (FREON 11) | ug/g  | <0.040     | <0.040     | <0.040     | 0.040 | 8919789  |
| Vinyl Chloride                    | ug/g  | <0.019     | <0.019     | <0.019     | 0.019 | 8919789  |
| p+m-Xylene                        | ug/g  | <0.020     | <0.020     | <0.020     | 0.020 | 8919789  |
| o-Xylene                          | ug/g  | <0.020     | <0.020     | <0.020     | 0.020 | 8919789  |
| Total Xylenes                     | ug/g  | <0.020     | <0.020     | <0.020     | 0.020 | 8919789  |
| F1 (C6-C10)                       | ug/g  | <10        | <10        | <10        | 10    | 8919789  |
| F1 (C6-C10) - BTEX                | ug/g  | <10        | <10        | <10        | 10    | 8919789  |
| F2-F4 Hydrocarbons                |       |            | •          |            |       |          |
| F2 (C10-C16 Hydrocarbons)         | ug/g  | <10        | <10        | <10        | 10    | 8915777  |
| F3 (C16-C34 Hydrocarbons)         | ug/g  | <50        | 50         | 95         | 50    | 8915777  |
| F4 (C34-C50 Hydrocarbons)         | ug/g  | <50        | <50        | 140        | 50    | 8915777  |
| Reached Baseline at C50           | ug/g  | Yes        | Yes        | Yes        |       | 8915777  |
| Surrogate Recovery (%)            |       |            | •          |            | •     |          |
| o-Terphenyl                       | %     | 90         | 90         | 101        |       | 8915777  |
| 4-Bromofluorobenzene              | %     | 101        | 102        | 99         |       | 8919789  |
| D10-o-Xylene                      | %     | 87         | 86         | 84         |       | 8919789  |
| D4-1,2-Dichloroethane             | %     | 91         | 92         | 93         |       | 8919789  |
| D8-Toluene                        | %     | 92         | 92         | 92         |       | 8919789  |
| RDL = Reportable Detection Limit  |       | -          |            | -          |       |          |
| QC Batch = Quality Control Batch  |       |            |            |            |       |          |



## **RESULTS OF ANALYSES OF SOIL**

| Bureau Veritas ID            |       | WYT844     | WYT845     | WYT846     | WYT847     | WYT848     | WYT849     |     |          |
|------------------------------|-------|------------|------------|------------|------------|------------|------------|-----|----------|
| Sampling Date                |       | 2023/09/12 | 2023/09/12 | 2023/09/12 | 2023/09/12 | 2023/09/12 | 2023/09/12 |     |          |
| Sampling Date                |       | 15:00      | 15:00      | 15:30      | 15:30      | 16:00      | 16:00      |     |          |
| COC Number                   |       | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |     |          |
|                              | UNITS | BH3-SS2    | BH3-SS4    | BH9-SS1    | BH9-SS3    | BH10-SS1   | BH10-SS3   | RDL | QC Batch |
| Inorganics                   |       |            |            |            |            |            |            |     |          |
| Moisture                     | %     | 16         | 9.1        | 12         | 9.9        | 14         | 13         | 1.0 | 8916052  |
| RDL = Reportable Detection   | Limit |            |            |            |            |            |            |     |          |
| QC Batch = Quality Control I |       |            |            |            |            |            |            |     |          |



#### **TEST SUMMARY**

| Bureau Veritas ID: | WYT844  |
|--------------------|---------|
| Sample ID:         | BH3-SS2 |
| Matrix:            | Soil    |

|  |  | Collected:<br>Shipped: | 2023/09/12 |
|--|--|------------------------|------------|
|  |  | ••                     | 2023/09/12 |
|  |  |                        |            |

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8912430 | N/A        | 2023/09/15    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8918742 | 2023/09/15 | 2023/09/15    | Daniel Teclu      |
| Moisture                             | BAL             | 8916052 | N/A        | 2023/09/14    | Simrat Bhathal    |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8915775 | 2023/09/14 | 2023/09/14    | Jonghan Yoon      |

| Bureau Veritas ID: | WYT845  |
|--------------------|---------|
| Sample ID:         | BH3-SS4 |
| Matrix:            | Soil    |

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------|
| 1,3-Dichloropropene Sum                | CALC            | 8912431 | N/A        | 2023/09/18    | Automated Statchk |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 8915777 | 2023/09/14 | 2023/09/15    | Dennis Ngondu     |
| Moisture                               | BAL             | 8916052 | N/A        | 2023/09/14    | Simrat Bhathal    |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 8919789 | N/A        | 2023/09/17    | Gladys Guerrero   |

| Bureau Veritas ID: | WYT846  |
|--------------------|---------|
| Sample ID:         | BH9-SS1 |
| Matrix:            | Soil    |

| Collected: | 2023/09/12 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2023/09/12 |

**Collected:** 2023/09/12

**Received:** 2023/09/12

Shipped:

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8912430 | N/A        | 2023/09/15    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8918742 | 2023/09/15 | 2023/09/15    | Daniel Teclu      |
| Moisture                             | BAL             | 8916052 | N/A        | 2023/09/14    | Simrat Bhathal    |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8915775 | 2023/09/14 | 2023/09/15    | Jonghan Yoon      |

| Bureau Veritas ID:<br>Sample ID:            | WYT846 Dup<br>BH9-SS1     |                 |         |            |               | Collected:<br>Shipped:              | 2023/09/12               |
|---------------------------------------------|---------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Matrix:                                     | Soil                      |                 |         |            |               | Received:                           | 2023/09/12               |
| Test Description                            |                           | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Acid Extractable Metals b                   | y ICPMS                   | ICP/MS          | 8918742 | 2023/09/15 | 2023/09/15    | Daniel Tec                          | lu                       |
| Bureau Veritas ID:<br>Sample ID:<br>Matrix: | WYT847<br>BH9-SS3<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2023/09/12<br>2023/09/12 |
| Test Description                            |                           | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| 1,3-Dichloropropene Sum                     | ı                         | CALC            | 8912431 | N/A        | 2023/09/18    | Automate                            | d Statchk                |
| Petroleum Hydrocarbons F2-F4 in Soil        |                           | GC/FID          | 8915777 | 2023/09/14 | 2023/09/15    | Dennis Ng                           | ondu                     |
| Moisture                                    |                           | BAL             | 8916052 | N/A        | 2023/09/14    | Simrat Bha                          | athal                    |
| Volatile Organic Compou                     | nds and F1 PHCs           | GC/MSFD         | 8919789 | N/A        | 2023/09/17    | Gladys Gu                           | errero                   |



#### **TEST SUMMARY**

Bureau Veritas ID:WYT848Sample ID:BH10-SS1Matrix:Soil

| Collected: | 2023/09/12 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2023/09/12 |

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8912430 | N/A        | 2023/09/15    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8918742 | 2023/09/15 | 2023/09/15    | Daniel Teclu      |
| Moisture                             | BAL             | 8916052 | N/A        | 2023/09/14    | Simrat Bhathal    |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8915775 | 2023/09/14 | 2023/09/15    | Jonghan Yoon      |

Bureau Veritas ID: WYT849 Sample ID: BH10-SS3 Matrix: Soil

| Collected: | 2023/09/12 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2023/09/12 |

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------|
| 1,3-Dichloropropene Sum                | CALC            | 8912431 | N/A        | 2023/09/18    | Automated Statchk |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 8915777 | 2023/09/14 | 2023/09/15    | Dennis Ngondu     |
| Moisture                               | BAL             | 8916052 | N/A        | 2023/09/14    | Simrat Bhathal    |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 8919789 | N/A        | 2023/09/17    | Gladys Guerrero   |



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 16.7°C

Results relate only to the items tested.



## QUALITY ASSURANCE REPORT

Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                |            | Matrix     | Spike     | SPIKED BLANK Method B |           | Blank   | ank RPE |           |           |
|----------|--------------------------------|------------|------------|-----------|-----------------------|-----------|---------|---------|-----------|-----------|
| QC Batch | Parameter                      | Date       | % Recovery | QC Limits | % Recovery            | QC Limits | Value   | UNITS   | Value (%) | QC Limits |
| 8915775  | D10-Anthracene                 | 2023/09/14 | 67         | 50 - 130  | 90                    | 50 - 130  | 88      | %       |           |           |
| 8915775  | D14-Terphenyl (FS)             | 2023/09/14 | 74         | 50 - 130  | 98                    | 50 - 130  | 92      | %       |           |           |
| 8915775  | D8-Acenaphthylene              | 2023/09/14 | 61         | 50 - 130  | 73                    | 50 - 130  | 63      | %       |           |           |
| 8915777  | o-Terphenyl                    | 2023/09/15 | 96         | 60 - 130  | 94                    | 60 - 130  | 97      | %       |           |           |
| 8919789  | 4-Bromofluorobenzene           | 2023/09/17 | 102        | 60 - 140  | 103                   | 60 - 140  | 101     | %       |           |           |
| 8919789  | D10-o-Xylene                   | 2023/09/17 | 88         | 60 - 130  | 94                    | 60 - 130  | 85      | %       |           |           |
| 8919789  | D4-1,2-Dichloroethane          | 2023/09/17 | 92         | 60 - 140  | 91                    | 60 - 140  | 90      | %       |           |           |
| 8919789  | D8-Toluene                     | 2023/09/17 | 100        | 60 - 140  | 99                    | 60 - 140  | 95      | %       |           |           |
| 8915775  | 1-Methylnaphthalene            | 2023/09/14 | 100        | 50 - 130  | 100                   | 50 - 130  | <0.0050 | ug/g    | NC (1)    | 40        |
| 8915775  | 2-Methylnaphthalene            | 2023/09/14 | 91         | 50 - 130  | 91                    | 50 - 130  | <0.0050 | ug/g    | 39 (1)    | 40        |
| 8915775  | Acenaphthene                   | 2023/09/14 | 92         | 50 - 130  | 92                    | 50 - 130  | <0.0050 | ug/g    | NC (1)    | 40        |
| 8915775  | Acenaphthylene                 | 2023/09/14 | 85         | 50 - 130  | 80                    | 50 - 130  | <0.0050 | ug/g    | NC (1)    | 40        |
| 8915775  | Anthracene                     | 2023/09/14 | 93         | 50 - 130  | 93                    | 50 - 130  | <0.0050 | ug/g    | 29 (1)    | 40        |
| 8915775  | Benzo(a)anthracene             | 2023/09/14 | 104        | 50 - 130  | 92                    | 50 - 130  | <0.0050 | ug/g    | 36 (1)    | 40        |
| 8915775  | Benzo(a)pyrene                 | 2023/09/14 | 94         | 50 - 130  | 91                    | 50 - 130  | <0.0050 | ug/g    | 35 (1)    | 40        |
| 8915775  | Benzo(b/j)fluoranthene         | 2023/09/14 | 88         | 50 - 130  | 94                    | 50 - 130  | <0.0050 | ug/g    | 31 (1)    | 40        |
| 8915775  | Benzo(g,h,i)perylene           | 2023/09/14 | 98         | 50 - 130  | 101                   | 50 - 130  | <0.0050 | ug/g    | 28 (1)    | 40        |
| 8915775  | Benzo(k)fluoranthene           | 2023/09/14 | 95         | 50 - 130  | 94                    | 50 - 130  | <0.0050 | ug/g    | 27 (1)    | 40        |
| 8915775  | Chrysene                       | 2023/09/14 | 97         | 50 - 130  | 96                    | 50 - 130  | <0.0050 | ug/g    | 28 (1)    | 40        |
| 8915775  | Dibenzo(a,h)anthracene         | 2023/09/14 | 103        | 50 - 130  | 95                    | 50 - 130  | <0.0050 | ug/g    | 31 (1)    | 40        |
| 8915775  | Fluoranthene                   | 2023/09/14 | 99         | 50 - 130  | 96                    | 50 - 130  | <0.0050 | ug/g    | 38 (1)    | 40        |
| 8915775  | Fluorene                       | 2023/09/14 | 96         | 50 - 130  | 93                    | 50 - 130  | <0.0050 | ug/g    | NC (1)    | 40        |
| 8915775  | Indeno(1,2,3-cd)pyrene         | 2023/09/14 | 93         | 50 - 130  | 94                    | 50 - 130  | <0.0050 | ug/g    | 31 (1)    | 40        |
| 8915775  | Naphthalene                    | 2023/09/14 | 83         | 50 - 130  | 85                    | 50 - 130  | <0.0050 | ug/g    | 32 (1)    | 40        |
| 8915775  | Phenanthrene                   | 2023/09/14 | 91         | 50 - 130  | 91                    | 50 - 130  | <0.0050 | ug/g    | NC (1)    | 40        |
| 8915775  | Pyrene                         | 2023/09/14 | 100        | 50 - 130  | 96                    | 50 - 130  | <0.0050 | ug/g    | 38 (1)    | 40        |
| 8915777  | F2 (C10-C16 Hydrocarbons)      | 2023/09/15 | 98         | 60 - 130  | 98                    | 80 - 120  | <10     | ug/g    | NC (1)    | 30        |
| 8915777  | F3 (C16-C34 Hydrocarbons)      | 2023/09/15 | 91         | 60 - 130  | 99                    | 80 - 120  | <50     | ug/g    | 6.9 (1)   | 30        |
| 8915777  | F4 (C34-C50 Hydrocarbons)      | 2023/09/15 | 88         | 60 - 130  | 99                    | 80 - 120  | <50     | ug/g    | NC (1)    | 30        |
| 8916052  | Moisture                       | 2023/09/14 |            |           |                       |           |         |         | 6.1 (1)   | 20        |
| 8918742  | Acid Extractable Antimony (Sb) | 2023/09/15 | 89 (2)     | 75 - 125  | 102                   | 80 - 120  | <0.20   | ug/g    | NC (3)    | 30        |

Page 11 of 19



# QUALITY ASSURANCE REPORT(CONT'D)

Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                  |            | Matrix Spike |           | SPIKED     | BLANK     | NK Method Blank |       | RPD       |           |
|----------|----------------------------------|------------|--------------|-----------|------------|-----------|-----------------|-------|-----------|-----------|
| QC Batch | Parameter                        | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value           | UNITS | Value (%) | QC Limits |
| 8918742  | Acid Extractable Arsenic (As)    | 2023/09/15 | 98 (2)       | 75 - 125  | 101        | 80 - 120  | <1.0            | ug/g  | 0.25 (3)  | 30        |
| 8918742  | Acid Extractable Barium (Ba)     | 2023/09/15 | NC (2)       | 75 - 125  | 100        | 80 - 120  | <0.50           | ug/g  | 3.2 (3)   | 30        |
| 8918742  | Acid Extractable Beryllium (Be)  | 2023/09/15 | 95 (2)       | 75 - 125  | 96         | 80 - 120  | <0.20           | ug/g  | 1.6 (3)   | 30        |
| 8918742  | Acid Extractable Boron (B)       | 2023/09/15 | 94 (2)       | 75 - 125  | 96         | 80 - 120  | <5.0            | ug/g  | 0.027 (3) | 30        |
| 8918742  | Acid Extractable Cadmium (Cd)    | 2023/09/15 | 98 (2)       | 75 - 125  | 98         | 80 - 120  | <0.10           | ug/g  | 4.1 (3)   | 30        |
| 8918742  | Acid Extractable Chromium (Cr)   | 2023/09/15 | 97 (2)       | 75 - 125  | 98         | 80 - 120  | <1.0            | ug/g  | 1.8 (3)   | 30        |
| 8918742  | Acid Extractable Cobalt (Co)     | 2023/09/15 | 93 (2)       | 75 - 125  | 97         | 80 - 120  | <0.10           | ug/g  | 1.2 (3)   | 30        |
| 8918742  | Acid Extractable Copper (Cu)     | 2023/09/15 | NC (2)       | 75 - 125  | 99         | 80 - 120  | <0.50           | ug/g  | 3.2 (3)   | 30        |
| 8918742  | Acid Extractable Lead (Pb)       | 2023/09/15 | 97 (2)       | 75 - 125  | 103        | 80 - 120  | <1.0            | ug/g  | 8.6 (3)   | 30        |
| 8918742  | Acid Extractable Molybdenum (Mo) | 2023/09/15 | 100 (2)      | 75 - 125  | 102        | 80 - 120  | <0.50           | ug/g  | 1.7 (3)   | 30        |
| 8918742  | Acid Extractable Nickel (Ni)     | 2023/09/15 | 97 (2)       | 75 - 125  | 100        | 80 - 120  | <0.50           | ug/g  | 1.9 (3)   | 30        |
| 8918742  | Acid Extractable Selenium (Se)   | 2023/09/15 | 98 (2)       | 75 - 125  | 102        | 80 - 120  | <0.50           | ug/g  | NC (3)    | 30        |
| 8918742  | Acid Extractable Silver (Ag)     | 2023/09/15 | 102 (2)      | 75 - 125  | 105        | 80 - 120  | <0.20           | ug/g  | NC (3)    | 30        |
| 8918742  | Acid Extractable Thallium (TI)   | 2023/09/15 | 99 (2)       | 75 - 125  | 104        | 80 - 120  | <0.050          | ug/g  | 4.3 (3)   | 30        |
| 8918742  | Acid Extractable Uranium (U)     | 2023/09/15 | 101 (2)      | 75 - 125  | 104        | 80 - 120  | <0.050          | ug/g  | 1.5 (3)   | 30        |
| 8918742  | Acid Extractable Vanadium (V)    | 2023/09/15 | NC (2)       | 75 - 125  | 97         | 80 - 120  | <5.0            | ug/g  | 0.11 (3)  | 30        |
| 8918742  | Acid Extractable Zinc (Zn)       | 2023/09/15 | NC (2)       | 75 - 125  | 99         | 80 - 120  | <5.0            | ug/g  | 2.5 (3)   | 30        |
| 8919789  | 1,1,1,2-Tetrachloroethane        | 2023/09/17 | 96           | 60 - 140  | 104        | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1,1-Trichloroethane            | 2023/09/17 | 88           | 60 - 140  | 95         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1,2,2-Tetrachloroethane        | 2023/09/17 | 94           | 60 - 140  | 100        | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1,2-Trichloroethane            | 2023/09/17 | 81           | 60 - 140  | 86         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1-Dichloroethane               | 2023/09/17 | 84           | 60 - 140  | 90         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1-Dichloroethylene             | 2023/09/17 | 79           | 60 - 140  | 85         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,2-Dichlorobenzene              | 2023/09/17 | 92           | 60 - 140  | 101        | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,2-Dichloroethane               | 2023/09/17 | 78           | 60 - 140  | 84         | 60 - 130  | <0.049          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,2-Dichloropropane              | 2023/09/17 | 85           | 60 - 140  | 91         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,3-Dichlorobenzene              | 2023/09/17 | 90           | 60 - 140  | 101        | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | 1,4-Dichlorobenzene              | 2023/09/17 | 98           | 60 - 140  | 109        | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8919789  | Acetone (2-Propanone)            | 2023/09/17 | 81           | 60 - 140  | 84         | 60 - 140  | <0.49           | ug/g  | NC (1)    | 50        |
| 8919789  | Benzene                          | 2023/09/17 | 82           | 60 - 140  | 89         | 60 - 130  | <0.0060         | ug/g  | NC (1)    | 50        |
| 8919789  | Bromodichloromethane             | 2023/09/17 | 94           | 60 - 140  | 101        | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |

Page 12 of 19



## QUALITY ASSURANCE REPORT(CONT'D)

Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                     | Matrix Spike |            | Spike     | SPIKED BLANK |           | Method Blank |       | RPD       |           |
|----------|-------------------------------------|--------------|------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                           | Date         | % Recovery | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 8919789  | Bromoform                           | 2023/09/17   | 90         | 60 - 140  | 97           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Bromomethane                        | 2023/09/17   | 86         | 60 - 140  | 93           | 60 - 140  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Carbon Tetrachloride                | 2023/09/17   | 88         | 60 - 140  | 96           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Chlorobenzene                       | 2023/09/17   | 94         | 60 - 140  | 103          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Chloroform                          | 2023/09/17   | 90         | 60 - 140  | 97           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | cis-1,2-Dichloroethylene            | 2023/09/17   | 89         | 60 - 140  | 97           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | cis-1,3-Dichloropropene             | 2023/09/17   | 85         | 60 - 140  | 93           | 60 - 130  | <0.030       | ug/g  | NC (1)    | 50        |
| 8919789  | Dibromochloromethane                | 2023/09/17   | 95         | 60 - 140  | 101          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Dichlorodifluoromethane (FREON 12)  | 2023/09/17   | 74         | 60 - 140  | 76           | 60 - 140  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Ethylbenzene                        | 2023/09/17   | 80         | 60 - 140  | 89           | 60 - 130  | <0.010       | ug/g  | NC (1)    | 50        |
| 8919789  | Ethylene Dibromide                  | 2023/09/17   | 95         | 60 - 140  | 101          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | F1 (C6-C10) - BTEX                  | 2023/09/17   |            |           |              |           | <10          | ug/g  | NC (1)    | 30        |
| 8919789  | F1 (C6-C10)                         | 2023/09/17   | 95         | 60 - 140  | 91           | 80 - 120  | <10          | ug/g  | NC (1)    | 30        |
| 8919789  | Hexane                              | 2023/09/17   | 73         | 60 - 140  | 81           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Methyl Ethyl Ketone (2-Butanone)    | 2023/09/17   | 87         | 60 - 140  | 91           | 60 - 140  | <0.40        | ug/g  | NC (1)    | 50        |
| 8919789  | Methyl Isobutyl Ketone              | 2023/09/17   | 84         | 60 - 140  | 90           | 60 - 130  | <0.40        | ug/g  | NC (1)    | 50        |
| 8919789  | Methyl t-butyl ether (MTBE)         | 2023/09/17   | 90         | 60 - 140  | 97           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Methylene Chloride(Dichloromethane) | 2023/09/17   | 89         | 60 - 140  | 96           | 60 - 130  | <0.049       | ug/g  | NC (1)    | 50        |
| 8919789  | o-Xylene                            | 2023/09/17   | 75         | 60 - 140  | 84           | 60 - 130  | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | p+m-Xylene                          | 2023/09/17   | 83         | 60 - 140  | 93           | 60 - 130  | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | Styrene                             | 2023/09/17   | 92         | 60 - 140  | 103          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Tetrachloroethylene                 | 2023/09/17   | 91         | 60 - 140  | 102          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Toluene                             | 2023/09/17   | 81         | 60 - 140  | 88           | 60 - 130  | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | Total Xylenes                       | 2023/09/17   |            |           |              |           | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | trans-1,2-Dichloroethylene          | 2023/09/17   | 83         | 60 - 140  | 93           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | trans-1,3-Dichloropropene           | 2023/09/17   | 85         | 60 - 140  | 92           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Trichloroethylene                   | 2023/09/17   | 94         | 60 - 140  | 103          | 60 - 130  | <0.010       | ug/g  | 7.7 (1)   | 50        |
| 8919789  | Trichlorofluoromethane (FREON 11)   | 2023/09/17   | 87         | 60 - 140  | 92           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |



## QUALITY ASSURANCE REPORT(CONT'D)

Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                |            |            | Spike     | SPIKED     | BLANK     | Method B | lank  | RPD       |           |  |  |
|----------|----------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|--|--|
| QC Batch | Parameter      | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |  |  |
| 8919789  | Vinyl Chloride | 2023/09/17 | 93         | 60 - 140  | 102        | 60 - 130  | <0.019   | ug/g  | NC (1)    | 50        |  |  |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) Matrix Spike Parent ID [WYT846-02]

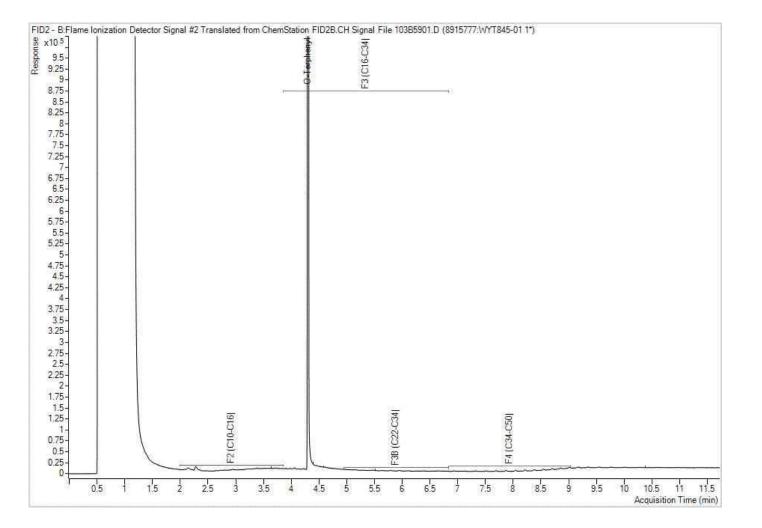
(3) Duplicate Parent ID [WYT846-02]

Page 14 of 19



#### VALIDATION SIGNATURE PAGE

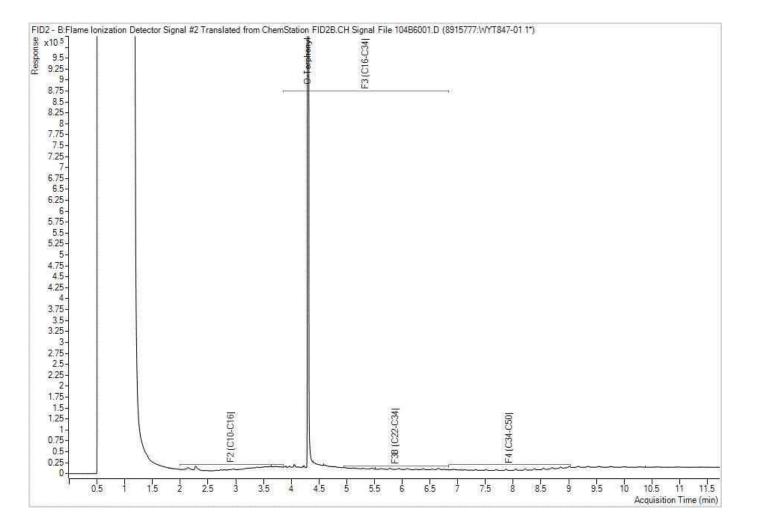
The analytical data and all QC contained in this report were reviewed and validated by:


Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

| WWW.EVNA.com 6740 Campobe<br>Phone: 905-81                     |                                                              |                                              |                                              |              |                                               | e: 800-563-62 | 56             |                 |                         |              |          |                     |                           |                                | 1            | CHAIN    | of ci<br>IV co  |          |          |       | D     |               |       |                                        |                         |                       |                    |            |                        |             | đ                          |                      | _  |
|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------|-----------------------------------------------|---------------|----------------|-----------------|-------------------------|--------------|----------|---------------------|---------------------------|--------------------------------|--------------|----------|-----------------|----------|----------|-------|-------|---------------|-------|----------------------------------------|-------------------------|-----------------------|--------------------|------------|------------------------|-------------|----------------------------|----------------------|----|
| voice information Invoice to (requires report)                 |                                                              | Report Information (if differs from invoice) |                                              |              |                                               |               |                |                 | -                       | -            | 1        | Project Information |                           |                                |              |          | 1               |          |          | 1     | 2-5   | Se            | p-23  | 3 1                                    | 8:0                     | 3                     |                    |            | ٦                      |             |                            |                      |    |
| mpany: Keystone Bonisonmunitas a                               | Company:                                                     |                                              |                                              |              |                                               |               |                | Quotat          | tion #                  |              |          |                     |                           |                                |              |          | 1               | v        | ud       |       |       |               | -     |                                        |                         |                       |                    |            |                        |             |                            |                      |    |
| ontact C                                                       | ontact<br>lame:                                              |                                              |                                              |              |                                               | -             | -              |                 |                         |              | P.O. #/  | AFE                 | 1:                        |                                |              |          |                 |          |          |       | 1.1   |               |       | Iat                                    | D                       | aj v                  | 11111              |            |                        |             |                            |                      |    |
| (737 M                                                         | treet                                                        | -                                            |                                              |              |                                               | -             |                |                 |                         | -            | Project  | Saten 7             | 1                         | ic.                            | 0            |          |                 |          |          |       | - "   |               |       |                                        |                         |                       | 61                 |            |                        |             |                            |                      |    |
|                                                                | ddress:<br>City:                                             |                                              |                                              |              | Prov:                                         | 1             | Post           | al              | -                       | -            | Site #:  |                     | +                         | 184                            |              |          |                 | -        |          | 1)    | -     |               |       |                                        |                         | 0                     | 01                 |            |                        |             |                            |                      |    |
|                                                                | hone:                                                        | 1                                            |                                              |              |                                               | -             | Code           | e:              |                         | -            | Site Lo  | ention              | -                         |                                |              | dhe      | (se             | R        | Nd       | -     | - 1   | RU            | K     |                                        | F                       | EN                    | IV-                | 199        | 7                      |             |                            |                      | -  |
|                                                                | mail:                                                        |                                              |                                              |              |                                               |               |                |                 |                         |              | Site Lo  |                     |                           | Tor                            |              | TP.      |                 |          |          |       |       | $\rightarrow$ |       | -                                      |                         |                       | - simerr           | Course     | ninor                  |             | _                          |                      | -  |
| Inust & Reas Torgen Vy Jor Mana-12                             | opies:                                                       | -                                            |                                              |              |                                               |               |                | -               |                         |              | Provine  | _                   | -                         | A                              |              | _        |                 |          |          |       |       | -             |       |                                        |                         |                       |                    |            |                        |             |                            |                      |    |
| Regulatory Criteria                                            |                                                              | - sale                                       | 1                                            |              | et un                                         | 漏 1           | 1              | 2               | 3                       |              |          |                     |                           |                                |              | 11       | 12 1            | 3 14     | 15       | 16    | 17    | 18            | 19    | 20                                     | 21                      | 22                    | line in            | Regul      | ar Turr                | naround     | Time (T                    | TI                   |    |
| Table 2 Ind/Comm Course & X<br>Table 3 Agri/other For RSC 6 M  | CME<br>eg 558*<br>hin 3 day T<br>1ISA<br>WQO<br>ilysis (chei |                                              | Sani<br>Stor                                 | m Sew<br>Mun | able:<br>ewer Byla<br>ver Bylaw<br>nicipality | ~             |                |                 | D                       |              |          |                     | anics                     | 100                            | HWS-B)       |          |                 |          |          |       |       |               |       | 1000 C                                 | TED                     | -                     | 100                | to 7 Da    | ay<br>n Turna<br>Surch | eround '    | 10 Da<br>Time (TA<br>ipply | v                    |    |
| SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLIN         | G UNTIL D                                                    |                                              | Y TO BL                                      |              | VERITAS<br>e (24hr)                           |               | GRED           | ERVED           | LAB FILTRATION REQUIRED |              |          | 022                 | Reg 153 metals and inorga | 153 ICPMS metals<br>153 metals | CPMS metals, |          |                 |          |          |       |       |               |       | <ul> <li>Contraction of the</li> </ul> | OF CONTAINERS SUBMITTED | HOLD - DO NOT ANALYZE | □ 3i<br>□ 2<br>□ 4 |            |                        | ſ           | ]] 1 Day<br>]] 3 Day       |                      |    |
| Sample Identification                                          | YY                                                           | мм                                           | DD                                           | нн           | мм                                            | Matrix        | FIELD FILTERED | FIELD PRESERVED | LAB FILTRA              | BTEX/F1      | F2 - F4  | vocs                | Reg 153 m                 | Reg 153 me                     | DA 11        |          |                 |          |          |       |       |               |       | a contraction of the                   | I OF CONT               | HOLD - DO             | Date<br>Require    | ed:        |                        | YY<br>ommen |                            | DD                   |    |
| BH3 - 557                                                      | 2023                                                         | 04                                           | 12                                           | 3            | 00                                            | Soil          | 1              |                 |                         |              |          |                     |                           | X                              | V            |          |                 |          |          |       |       |               |       |                                        |                         | -                     |                    |            |                        |             | -                          |                      |    |
| BH3 - 354                                                      | 1                                                            | 1                                            | 1                                            | 3            | 00                                            | 1             |                |                 |                         | Х            | X        | v                   |                           |                                | 1            |          | +               | +        |          |       | +     | -             | $\pm$ | +                                      |                         |                       |                    |            |                        |             |                            |                      | -  |
| BH9-SSI                                                        | ++                                                           | +                                            | H                                            | 3            | 30                                            |               |                |                 | $\vdash$                | ^            | ~        |                     | -                         | -                              | 1            |          | +               | -        | +        |       | +     | +             | +     | +                                      | -                       | -                     |                    |            |                        |             |                            |                      | -  |
|                                                                | H                                                            |                                              |                                              | 3            | 30                                            |               |                |                 |                         | ~            | ~ .      | _                   | - 1                       | 7                              | X            |          | -               | -        |          |       | _     | -             | -     | -                                      | -                       | _                     |                    |            |                        | -           |                            | _                    | _  |
| 1317 9 - 55.8                                                  |                                                              | 1                                            | 1                                            | -            | 20                                            |               |                |                 |                         | X            | X        | X                   |                           |                                |              |          |                 | _        |          |       |       |               |       |                                        |                         |                       |                    |            | _                      |             |                            |                      |    |
| BH10- 551                                                      |                                                              |                                              |                                              | 4            | 00                                            |               |                |                 |                         |              |          |                     | 1                         | X                              | X            |          |                 |          |          |       |       |               |       |                                        |                         | 2                     |                    |            |                        |             |                            |                      |    |
| BH10 - 553                                                     | 1                                                            | 4                                            | 4                                            | 4            | 00                                            | Y             |                |                 |                         | X            | X        | X                   |                           |                                |              |          |                 |          |          |       |       |               |       |                                        |                         |                       |                    |            |                        |             |                            |                      | ٦  |
|                                                                |                                                              |                                              |                                              |              |                                               |               |                |                 |                         |              |          |                     |                           |                                | $\square$    |          |                 |          |          |       |       |               |       | 1                                      | 1                       |                       |                    |            |                        |             |                            |                      | 1  |
|                                                                | -                                                            |                                              |                                              |              |                                               |               |                |                 |                         | -            | -        | +                   | +                         | +                              | +            | ++       | +               | +        | $\vdash$ | +     |       | +             | -     | t                                      | +                       | -                     |                    |            |                        |             |                            |                      | -  |
|                                                                |                                                              |                                              | -                                            | 1            |                                               |               |                |                 |                         | -+           |          | +                   | +                         | +                              | -            | ++       | -               | -        | -        |       | -     | -             | -     | -                                      | -                       |                       |                    |            |                        |             |                            |                      | -  |
|                                                                | -                                                            |                                              |                                              | -            | ++                                            |               | -              |                 |                         |              | _        | -                   | -                         | _                              | +            |          |                 | _        | -        |       | _     | _             | _     | -                                      | -                       | -                     |                    |            | _                      |             |                            |                      | _  |
|                                                                |                                                              |                                              |                                              |              |                                               |               |                |                 |                         |              |          |                     |                           | _                              |              |          |                 |          |          |       |       |               |       |                                        |                         |                       |                    |            |                        |             |                            |                      |    |
| 1                                                              |                                                              |                                              |                                              |              |                                               |               |                |                 |                         |              |          |                     |                           |                                |              |          |                 |          |          |       |       |               |       |                                        |                         |                       |                    |            |                        |             |                            |                      |    |
|                                                                |                                                              |                                              | 1                                            |              |                                               |               |                |                 |                         |              |          |                     |                           |                                |              |          |                 |          |          |       |       |               |       |                                        |                         |                       |                    |            |                        |             |                            |                      | 1  |
| NLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS C | HAIN OF C                                                    | USTOD                                        | Y 15 SUB                                     | BECT T       | O BUREAU                                      | UVERITAS STA  | NDARD          | TERN            | AS AND                  | D CON        | DITION   | 5. SIC              | SNING                     | OF THIS                        | SICHA        | IN OF CU | STODY           | DOCUM    | MENT     | S ACK | IOWLE | DGM           | ENTAN | ND AC                                  | CEPT                    | ANC                   | E OF OU            | IR TER     | MS AN                  | D COND      | TIONS                      | HICH A               | RE |
| LAB USE ONLY Yes No<br>al present N/<br>al intact              | 18                                                           | LABLE F                                      | OR VIEV<br>LAB US<br>esent<br>act<br>; media | E ONLY       | at www.                                       | BVNA.COM/TE   | RM5-A<br>No    | ND-CO           | C                       | 10050        | DR BY C  | ALLIN               | IG THE                    | LABOR                          | Seal         | V LISTED | ABOVE<br>AB USI | TO OB    | TAIN A   | COPY  | Yes   |               | No    |                                        | °C                      |                       | 1                  | 2          |                        | 3           | Tem<br>rea                 | perature<br>ding by: | e  |
| Relinquished by: (Signature/Print) Date<br>Alushary Do 2023 0  |                                                              | 2                                            | нн<br>6                                      | 1            |                                               | \$C           | Reci           |                 |                         | ignatur<br>O | re/ Prin | nt)<br>I U          | 8                         | ~                              |              | Ž3       |                 | MN<br>OS |          | 12    |       | 18            |       | MM                                     |                         |                       |                    | <u>Spi</u> | ecial lin              | structio    | ons                        | 0                    |    |

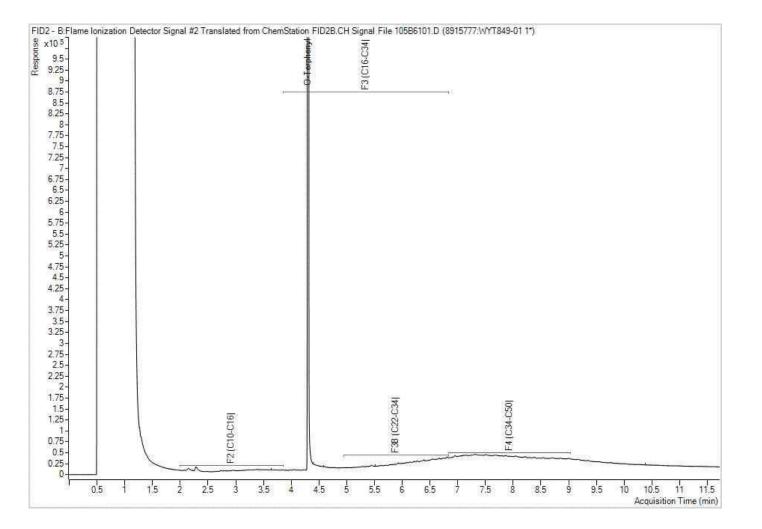
Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH3-SS4


#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH9-SS3


#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH10-SS3

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.



Your Project #: 18494 Site#: TORONTO Site Location: 66 FORDHOUSE BLVD Your C.O.C. #: n/a

#### Attention: Jeff Muir

Keystone Environmental 6733 Mississauga Road Suite 700 Mississauga, ON Canada

> Report Date: 2023/09/20 Report #: R7822467 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

### BUREAU VERITAS JOB #: C3S1596

Received: 2023/09/13, 17:53

Sample Matrix: Soil # Samples Received: 3

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Methylnaphthalene Sum                    | 2        | N/A        | 2023/09/20 | CAM SOP-00301     | EPA 8270D m          |
| 1,3-Dichloropropene Sum                  | 1        | N/A        | 2023/09/18 |                   | EPA 8260C m          |
| Petroleum Hydrocarbons F2-F4 in Soil (1) | 1        | 2023/09/15 | 2023/09/16 | CAM SOP-00316     | CCME CWS m           |
| Acid Extractable Metals by ICPMS         | 2        | 2023/09/18 | 2023/09/18 | CAM SOP-00447     | EPA 6020B m          |
| Moisture                                 | 3        | N/A        | 2023/09/16 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PAH Compounds in Soil by GC/MS (SIM)     | 2        | 2023/09/15 | 2023/09/16 | CAM SOP-00318     | EPA 8270E            |
| Volatile Organic Compounds and F1 PHCs   | 1        | N/A        | 2023/09/18 | CAM SOP-00230     | EPA 8260C m          |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003".

Page 1 of 16



Your Project #: 18494 Site#: TORONTO Site Location: 66 FORDHOUSE BLVD Your C.O.C. #: n/a

#### Attention: Jeff Muir

Keystone Environmental 6733 Mississauga Road Suite 700 Mississauga, ON Canada

> Report Date: 2023/09/20 Report #: R7822467 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### BUREAU VERITAS JOB #: C3S1596

#### Received: 2023/09/13, 17:53

Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Kudrat Bajwa, B.Sc., Project Manager Email: Kudrat.Bajwa@bureauveritas.com Phone# (905)817-5755

-----

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



# **O.REG 153 ICPMS METALS (SOIL)**

| Bureau Veritas ID                |       | WZC999     | WZD000     |       |          |
|----------------------------------|-------|------------|------------|-------|----------|
| Sampling Date                    |       | 2023/09/13 | 2023/09/13 |       |          |
|                                  |       | 03:30      | 04:00      |       |          |
| COC Number                       |       | n/a        | n/a        |       |          |
|                                  | UNITS | BH2-SS2    | BH5-SS2    | RDL   | QC Batch |
| Metals                           |       |            |            |       |          |
| Acid Extractable Antimony (Sb)   | ug/g  | 0.23       | <0.20      | 0.20  | 8922840  |
| Acid Extractable Arsenic (As)    | ug/g  | 6.6        | 4.8        | 1.0   | 8922840  |
| Acid Extractable Barium (Ba)     | ug/g  | 62         | 94         | 0.50  | 8922840  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.90       | 0.69       | 0.20  | 8922840  |
| Acid Extractable Boron (B)       | ug/g  | 13         | 8.3        | 5.0   | 8922840  |
| Acid Extractable Cadmium (Cd)    | ug/g  | <0.10      | <0.10      | 0.10  | 8922840  |
| Acid Extractable Chromium (Cr)   | ug/g  | 25         | 22         | 1.0   | 8922840  |
| Acid Extractable Cobalt (Co)     | ug/g  | 16         | 11         | 0.10  | 8922840  |
| Acid Extractable Copper (Cu)     | ug/g  | 25         | 32         | 0.50  | 8922840  |
| Acid Extractable Lead (Pb)       | ug/g  | 4.5        | 13         | 1.0   | 8922840  |
| Acid Extractable Molybdenum (Mo) | ug/g  | <0.50      | <0.50      | 0.50  | 8922840  |
| Acid Extractable Nickel (Ni)     | ug/g  | 32         | 25         | 0.50  | 8922840  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50      | <0.50      | 0.50  | 8922840  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20      | <0.20      | 0.20  | 8922840  |
| Acid Extractable Thallium (Tl)   | ug/g  | 0.13       | 0.14       | 0.050 | 8922840  |
| Acid Extractable Uranium (U)     | ug/g  | 0.57       | 0.79       | 0.050 | 8922840  |
| Acid Extractable Vanadium (V)    | ug/g  | 32         | 31         | 5.0   | 8922840  |
| Acid Extractable Zinc (Zn)       | ug/g  | 63         | 57         | 5.0   | 8922840  |
| RDL = Reportable Detection Limit | •     | -          |            |       |          |
| QC Batch = Quality Control Batch |       |            |            |       |          |



| 0.REG 155 PAR5 (501L)                                                                |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                      | WZC999                                                                | WZD000                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                      | 2023/09/13                                                            | 2023/09/13                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                      | 03:30                                                                 | 04:00                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                      | n/a                                                                   | n/a                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| UNITS                                                                                | BH2-SS2                                                               | BH5-SS2                                                                                                                                                 | RDL                                                                                                                                                                                                  | QC Batch                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Calculated Parameters<br>Methylnaphthalene, 2-(1-) ug/g <0.0071 <0.0071 0.0071 89156 |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0071                                                               | <0.0071                                                                                                                                                 | 0.0071                                                                                                                                                                                               | 8915638                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| •                                                                                    |                                                                       |                                                                                                                                                         | •                                                                                                                                                                                                    |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ug/g                                                                                 | <0.0050                                                               | <0.0050                                                                                                                                                 | 0.0050                                                                                                                                                                                               | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                                      |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| %                                                                                    | 89                                                                    | 92                                                                                                                                                      |                                                                                                                                                                                                      | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| %                                                                                    | 89                                                                    | 88                                                                                                                                                      |                                                                                                                                                                                                      | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| %                                                                                    | 94                                                                    | 93                                                                                                                                                      |                                                                                                                                                                                                      | 8918731                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| imit                                                                                 |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| atch                                                                                 |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                      | UNITS<br>UB/g<br>Ug/g<br>Ug/g<br>Ug/g<br>Ug/g<br>Ug/g<br>Ug/g<br>Ug/g | WZC999           2023/09/13<br>03:30           n/a           UNITS           BH2-SS2           ug/g           volumits           ug/g           <0.0071 | WZC999         WZD000           2023/09/13         2023/09/13           03:30         04:00           n/a         n/a           UNITS         BH2-SS2         BH5-SS2           ug/g         <0.0071 | WZC999         WZD000           2023/09/13         2023/09/13           03:30         04:00           n/a         n/a           UNITS         BH2-SS2         BH5-SS2         RDL           ug/g         <0.0071 |  |  |  |  |  |  |  |

## **O.REG 153 PAHS (SOIL)**



# O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Calculated Parameters         ug/g         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bureau Veritas ID                                                                              |                      | WZD001     |        |          |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------|------------|--------|----------|---------|
| COC Number         Image: Constraint of the second sec | Complian Data                                                                                  |                      | 2023/09/13 |        |          |         |
| UNITSBH5-SS4RDLQC BatchCalculated Parameters1,3-Dichloropropene (cis+trans) $ug/g$ <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampling Date                                                                                  |                      | 04:00      |        |          |         |
| Calculated Parameters         ug/g         <0.050         8914134           I,3-Dichloropropene (cis+trans)         ug/g         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COC Number                                                                                     |                      | n/a        |        |          |         |
| 1,3-Dichloropropene (cis+trans)       ug/g       <0.050       8914134         Volatile Organics       Acetone (2-Propanone)       ug/g       <0.49       8919789         Benzene       ug/g       <0.0000       0.0000       8919789         Bromodichloromethane       ug/g       <0.040       8919789         Bromoform       ug/g       <0.040       8919789         Bromoform       ug/g       <0.040       8919789         Bromomethane       ug/g       <0.040       8919789         Carbon Tetrachloride       ug/g       <0.040       8919789         Chlorobenzene       ug/g       <0.040       8919789         Dibromochloromethane       ug/g       <0.040       8919789         Chlorobenzene       ug/g       <0.040       8919789         Dibromochloromethane       ug/g       <0.040       8919789         1,2-Dichlorobenzene       ug/g       <0.040       8919789         1,3-Dichlorobenzene       ug/g       <0.040       8919789         1,4-Dichlorobenzene       ug/g       <0.040       8919789         1,1-Dichloroethane       ug/g       <0.040       8919789         1,1-Dichloroethane       ug/g       <0.040       0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                | UNITS                | BH5-SS4    | RDL    | QC Batch |         |
| Volatile OrganicsAcetone (2-Propanone) $ug/g$ <0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculated Parameters                                                                          |                      |            |        |          |         |
| Acetone (2-Propanone) $ug/g$ $<0.49$ $0.49$ $8919789$ Benzene $ug/g$ $<0.0060$ $0.0060$ $8919789$ Bromodichloromethane $ug/g$ $<0.040$ $0.040$ $8919789$ Bromoform $ug/g$ $<0.040$ $0.040$ $8919789$ Bromomethane $ug/g$ $<0.040$ $0.040$ $8919789$ Carbon Tetrachloride $ug/g$ $<0.040$ $0.040$ $8919789$ Chlorobenzene $ug/g$ $<0.040$ $0.040$ $8919789$ Chloroform $ug/g$ $<0.040$ $0.040$ $8919789$ Dibromochloromethane $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichlorobenzene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,3-Dichlorobenzene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,4-Dichlorobenzene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,1-Dichlorobenzene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,1-Dichloroethane $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethane $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethylene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethane $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethylene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethylene $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dichloropropane $ug/g$ $<0.040$ $0.040$ $8919789$ 1,2-Dich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3-Dichloropropene (cis+trans)                                                                | ug/g                 | <0.050     | 0.050  | 8914134  |         |
| Benzene $ug/g<0.00600.00608919789Bromodichloromethaneug/g<0.040$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volatile Organics                                                                              |                      |            |        |          |         |
| Bromodichloromethaneug/g $<0.0000$ $0.0000$ $8919789$ Bromoformug/g $<0.040$ $0.040$ $8919789$ Bromomethaneug/g $<0.040$ $0.040$ $8919789$ Carbon Tetrachlorideug/g $<0.040$ $0.040$ $8919789$ Chlorobenzeneug/g $<0.040$ $0.040$ $8919789$ Chloroformug/g $<0.040$ $0.040$ $8919789$ Dibromochloromethaneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,3-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,4-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,4-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,1-Dichloroethaneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethaneug/g $<0.040$ $0.040$ $8919789$ 1,1-Dichloroethaneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloropropeneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloropropeneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloropropeneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloropropeneug/g <td>Acetone (2-Propanone)</td> <td>ug/g</td> <td>&lt;0.49</td> <td>0.49</td> <td>8919789</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acetone (2-Propanone)                                                                          | ug/g                 | <0.49      | 0.49   | 8919789  |         |
| Bromoformug/g<0.0400.0408919789Bromomethaneug/g<0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzene                                                                                        | ug/g                 | <0.0060    | 0.0060 | 8919789  |         |
| Bromomethaneug/g<0.0400.0408919789Carbon Tetrachlorideug/g<0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bromodichloromethane                                                                           | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Carbon Tetrachlorideug/g<0.0400.0408919789Chlorobenzeneug/g<0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bromoform                                                                                      | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Hays         Hors         Hors <td>Bromomethane</td> <td>ug/g</td> <td>&lt;0.040</td> <td>0.040</td> <td>8919789</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromomethane                                                                                   | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Hay B         Hore         Direct         Direct <th direct<="" td="" th<=""><td>Carbon Tetrachloride</td><td>ug/g</td><td>&lt;0.040</td><td>0.040</td><td>8919789</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <td>Carbon Tetrachloride</td> <td>ug/g</td> <td>&lt;0.040</td> <td>0.040</td> <td>8919789</td> | Carbon Tetrachloride | ug/g       | <0.040 | 0.040    | 8919789 |
| bibromochloromethane         ug/g         clore         clore <thclore< th="">         clore         clore<td>Chlorobenzene</td><td>ug/g</td><td>&lt;0.040</td><td>0.040</td><td>8919789</td></thclore<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorobenzene                                                                                  | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,2-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,3-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,4-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,4-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,4-Dichlorobenzeneug/g $<0.040$ $0.040$ $8919789$ 1,1-Dichloroethaneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethaneug/g $<0.040$ $0.040$ $8919789$ 1,1-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ 1,1-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ 1,2-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ trans-1,2-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ trans-1,2-Dichloroethyleneug/g $<0.040$ $0.040$ $8919789$ trans-1,3-Dichloropropeneug/g $<0.040$ $0.040$ $8919789$ trans-1,3-Dichloropropeneug/g $<0.040$ $0.040$ $8919789$ Ethylene Dibromideug/g $<0.040$ $0.040$ $8919789$ Hexaneug/g $<0.040$ $0.040$ $8919789$ Hexaneug/g $<0.040$ $0.040$ $8919789$ Hetylene Chloride(Dichloromethane)ug/g $<0.040$ $0.040$ $8919789$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chloroform                                                                                     | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,3-Dichlorobenzene       ug/g       <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibromochloromethane                                                                           | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,4-Dichlorobenzene         ug/g         <0.040         8919789           Dichlorodifluoromethane (FREON 12)         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichlorobenzene                                                                            | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Dichlorodifluoromethane (FREON 12)         ug/g         <0.040         8919789           1,1-Dichloroethane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichlorobenzene                                                                            | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,1-Dichloroethane         ug/g         <0.040         8919789           1,2-Dichloroethane         ug/g         <0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,4-Dichlorobenzene                                                                            | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,2-Dichloroethane         ug/g         <0.049         0.049         8919789           1,1-Dichloroethylene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dichlorodifluoromethane (FREON 12)                                                             | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,1-Dichloroethylene         ug/g         <0.040         8919789           cis-1,2-Dichloroethylene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethane                                                                             | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| cis-1,2-Dichloroethylene         ug/g         <0.040         8919789           trans-1,2-Dichloroethylene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichloroethane                                                                             | ug/g                 | <0.049     | 0.049  | 8919789  |         |
| trans-1,2-Dichloroethylene         ug/g         <0.040         8919789           1,2-Dichloropropane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1-Dichloroethylene                                                                           | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| 1,2-Dichloropropane       ug/g       <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cis-1,2-Dichloroethylene                                                                       | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| cis-1,3-Dichloropropene         ug/g         <0.030         0.030         8919789           trans-1,3-Dichloropropene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trans-1,2-Dichloroethylene                                                                     | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| trans-1,3-Dichloropropene         ug/g         <0.040         0.040         8919789           Ethylbenzene         ug/g         <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dichloropropane                                                                            | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Ethylbenzene         ug/g         <0.010         0.010         8919789           Ethylene Dibromide         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cis-1,3-Dichloropropene                                                                        | ug/g                 | <0.030     | 0.030  | 8919789  |         |
| Link         Link <thlink< th="">         Link         Link         <thl< td=""><td>trans-1,3-Dichloropropene</td><td>ug/g</td><td>&lt;0.040</td><td>0.040</td><td>8919789</td></thl<></thlink<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trans-1,3-Dichloropropene                                                                      | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Hexane         ug/g         <0.040         0.040         8919789           Methylene Chloride(Dichloromethane)         ug/g         <0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethylbenzene                                                                                   | ug/g                 | <0.010     | 0.010  | 8919789  |         |
| Methylene Chloride(Dichloromethane) ug/g <0.049 0.049 8919789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ethylene Dibromide                                                                             | ug/g                 | <0.040     | 0.040  | 8919789  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexane                                                                                         | ug/g                 | <0.040     | 0.040  | 8919789  |         |
| Methyl Ethyl Ketone (2-Butanone) ug/g <0.40 0.40 8919789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methylene Chloride(Dichloromethane)                                                            | ug/g                 | <0.049     | 0.049  | 8919789  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl Ethyl Ketone (2-Butanone)                                                               | ug/g                 | <0.40      | 0.40   | 8919789  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl Isobutyl Ketone                                                                         |                      | <0.40      | 0.40   | 8919789  |         |
| Methyl t-butyl ether (MTBE) ug/g <0.040 0.040 8919789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl t-butyl ether (MTBE)                                                                    | ug/g                 | <0.040     | 0.040  | 8919789  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Styrene                                                                                        |                      | <0.040     | 0.040  | 8919789  |         |
| RDL = Reportable Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RDL = Reportable Detection Limit                                                               |                      | -          |        |          |         |
| QC Batch = Quality Control Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QC Batch = Quality Control Batch                                                               |                      |            |        |          |         |



# O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                 |       | WZD001     |       |          |
|-----------------------------------|-------|------------|-------|----------|
| Course line Date                  |       | 2023/09/13 |       |          |
| Sampling Date                     |       | 04:00      |       |          |
| COC Number                        |       | n/a        |       |          |
|                                   | UNITS | BH5-SS4    | RDL   | QC Batch |
| 1,1,1,2-Tetrachloroethane         | ug/g  | <0.040     | 0.040 | 8919789  |
| 1,1,2,2-Tetrachloroethane         | ug/g  | <0.040     | 0.040 | 8919789  |
| Tetrachloroethylene               | ug/g  | <0.040     | 0.040 | 8919789  |
| Toluene                           | ug/g  | <0.020     | 0.020 | 8919789  |
| 1,1,1-Trichloroethane             | ug/g  | <0.040     | 0.040 | 8919789  |
| 1,1,2-Trichloroethane             | ug/g  | <0.040     | 0.040 | 8919789  |
| Trichloroethylene                 | ug/g  | <0.010     | 0.010 | 8919789  |
| Trichlorofluoromethane (FREON 11) | ug/g  | <0.040     | 0.040 | 8919789  |
| Vinyl Chloride                    | ug/g  | <0.019     | 0.019 | 8919789  |
| p+m-Xylene                        | ug/g  | <0.020     | 0.020 | 8919789  |
| o-Xylene                          | ug/g  | <0.020     | 0.020 | 8919789  |
| Total Xylenes                     | ug/g  | <0.020     | 0.020 | 8919789  |
| F1 (C6-C10)                       | ug/g  | <10        | 10    | 8919789  |
| F1 (C6-C10) - BTEX                | ug/g  | <10        | 10    | 8919789  |
| F2-F4 Hydrocarbons                |       |            |       |          |
| F2 (C10-C16 Hydrocarbons)         | ug/g  | <10        | 10    | 8918743  |
| F3 (C16-C34 Hydrocarbons)         | ug/g  | <50        | 50    | 8918743  |
| F4 (C34-C50 Hydrocarbons)         | ug/g  | <50        | 50    | 8918743  |
| Reached Baseline at C50           | ug/g  | Yes        |       | 8918743  |
| Surrogate Recovery (%)            |       |            | -     |          |
| o-Terphenyl                       | %     | 98         |       | 8918743  |
| 4-Bromofluorobenzene              | %     | 100        |       | 8919789  |
| D10-o-Xylene                      | %     | 79         |       | 8919789  |
| D4-1,2-Dichloroethane             | %     | 93         |       | 8919789  |
| D8-Toluene                        | %     | 93         |       | 8919789  |
| RDL = Reportable Detection Limit  |       |            |       |          |
| QC Batch = Quality Control Batch  |       |            |       |          |



# **RESULTS OF ANALYSES OF SOIL**

| Bureau Veritas ID                          |  | WZC999     | WZD000     | WZD001     |  |  |  |  |  |  |
|--------------------------------------------|--|------------|------------|------------|--|--|--|--|--|--|
| Sampling Data                              |  | 2023/09/13 | 2023/09/13 | 2023/09/13 |  |  |  |  |  |  |
| Sampling Date                              |  | 03:30      | 04:00      | 04:00      |  |  |  |  |  |  |
| COC Number                                 |  | n/a        | n/a        | n/a        |  |  |  |  |  |  |
| UNITS BH2-SS2 BH5-SS2 BH5-SS4 RDL QC Batch |  |            |            |            |  |  |  |  |  |  |
| Inorganics                                 |  |            |            |            |  |  |  |  |  |  |
| Moisture % 12 12 9.6 1.0 8921687           |  |            |            |            |  |  |  |  |  |  |
| RDL = Reportable Detection Limit           |  |            |            |            |  |  |  |  |  |  |
| QC Batch = Quality Control Batch           |  |            |            |            |  |  |  |  |  |  |



### **TEST SUMMARY**

| Bureau Veritas ID: | WZC999  |
|--------------------|---------|
| Sample ID:         | BH2-SS2 |
| Matrix:            | Soil    |

| Collected: |
|------------|

Shipped:

Shipped:

2023/09/13

Received: 2023/09/13

Collected: 2023/09/13

**Received:** 2023/09/13

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8915638 | N/A        | 2023/09/20    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8922840 | 2023/09/18 | 2023/09/18    | Gagandeep Rai     |
| Moisture                             | BAL             | 8921687 | N/A        | 2023/09/16    | Shivani Desai     |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8918731 | 2023/09/15 | 2023/09/16    | Mitesh Raj        |

| Bureau Veritas ID: | WZD000  |
|--------------------|---------|
| Sample ID:         | BH5-SS2 |
| Matrix:            | Soil    |

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8915638 | N/A        | 2023/09/20    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8922840 | 2023/09/18 | 2023/09/18    | Gagandeep Rai     |
| Moisture                             | BAL             | 8921687 | N/A        | 2023/09/16    | Shivani Desai     |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8918731 | 2023/09/15 | 2023/09/16    | Mitesh Raj        |

| Bureau Veritas ID: WZD001<br>Sample ID: BH5-SS4<br>Matrix: Soil |                 |         |            |               | Collected: 2023/09/13<br>Shipped:<br>Received: 2023/09/13 |
|-----------------------------------------------------------------|-----------------|---------|------------|---------------|-----------------------------------------------------------|
| Test Description                                                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| 1,3-Dichloropropene Sum                                         | CALC            | 8914134 | N/A        | 2023/09/18    | Automated Statchk                                         |
| Petroleum Hydrocarbons F2-F4 in Soil                            | GC/FID          | 8918743 | 2023/09/15 | 2023/09/16    | Jeevaraj Jeevaratrnam                                     |
| Moisture                                                        | BAL             | 8921687 | N/A        | 2023/09/16    | Shivani Desai                                             |
| Volatile Organic Compounds and F1 PHCs                          | GC/MSFD         | 8919789 | N/A        | 2023/09/18    | Gladys Guerrero                                           |



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 21.7°C

Results relate only to the items tested.



# **QUALITY ASSURANCE REPORT**

Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                           |            | Matrix Spike |           | SPIKED     | BLANK     | Method E | Blank | RPI       | )         |
|----------|---------------------------|------------|--------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 8918731  | D10-Anthracene            | 2023/09/15 | 97           | 50 - 130  | 94         | 50 - 130  | 94       | %     |           |           |
| 8918731  | D14-Terphenyl (FS)        | 2023/09/15 | 91           | 50 - 130  | 90         | 50 - 130  | 89       | %     |           | 1         |
| 8918731  | D8-Acenaphthylene         | 2023/09/15 | 101          | 50 - 130  | 100        | 50 - 130  | 94       | %     |           |           |
| 8918743  | o-Terphenyl               | 2023/09/15 | 100          | 60 - 130  | 99         | 60 - 130  | 99       | %     |           |           |
| 8919789  | 4-Bromofluorobenzene      | 2023/09/17 | 102          | 60 - 140  | 103        | 60 - 140  | 101      | %     |           | 1         |
| 8919789  | D10-o-Xylene              | 2023/09/17 | 88           | 60 - 130  | 94         | 60 - 130  | 85       | %     |           |           |
| 8919789  | D4-1,2-Dichloroethane     | 2023/09/17 | 92           | 60 - 140  | 91         | 60 - 140  | 90       | %     |           |           |
| 8919789  | D8-Toluene                | 2023/09/17 | 100          | 60 - 140  | 99         | 60 - 140  | 95       | %     |           | 1         |
| 8918731  | 1-Methylnaphthalene       | 2023/09/15 | 95           | 50 - 130  | 105        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | 2-Methylnaphthalene       | 2023/09/15 | 85           | 50 - 130  | 91         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Acenaphthene              | 2023/09/15 | 89           | 50 - 130  | 96         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Acenaphthylene            | 2023/09/15 | 109          | 50 - 130  | 111        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Anthracene                | 2023/09/15 | 102          | 50 - 130  | 107        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Benzo(a)anthracene        | 2023/09/15 | 101          | 50 - 130  | 104        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Benzo(a)pyrene            | 2023/09/15 | 84           | 50 - 130  | 95         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Benzo(b/j)fluoranthene    | 2023/09/15 | 87           | 50 - 130  | 93         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Benzo(g,h,i)perylene      | 2023/09/15 | 92           | 50 - 130  | 99         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Benzo(k)fluoranthene      | 2023/09/15 | 80           | 50 - 130  | 88         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Chrysene                  | 2023/09/15 | 92           | 50 - 130  | 97         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Dibenzo(a,h)anthracene    | 2023/09/15 | 99           | 50 - 130  | 101        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Fluoranthene              | 2023/09/15 | 97           | 50 - 130  | 101        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Fluorene                  | 2023/09/15 | 99           | 50 - 130  | 106        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Indeno(1,2,3-cd)pyrene    | 2023/09/15 | 97           | 50 - 130  | 103        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Naphthalene               | 2023/09/15 | 84           | 50 - 130  | 92         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Phenanthrene              | 2023/09/15 | 92           | 50 - 130  | 95         | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918731  | Pyrene                    | 2023/09/15 | 97           | 50 - 130  | 101        | 50 - 130  | <0.0050  | ug/g  | NC (1)    | 40        |
| 8918743  | F2 (C10-C16 Hydrocarbons) | 2023/09/15 | 110          | 60 - 130  | 107        | 80 - 120  | <10      | ug/g  | NC (1)    | 30        |
| 8918743  | F3 (C16-C34 Hydrocarbons) | 2023/09/15 | 110          | 60 - 130  | 108        | 80 - 120  | <50      | ug/g  | NC (1)    | 30        |
| 8918743  | F4 (C34-C50 Hydrocarbons) | 2023/09/15 | 108          | 60 - 130  | 106        | 80 - 120  | <50      | ug/g  | NC (1)    | 30        |
| 8919789  | 1,1,1,2-Tetrachloroethane | 2023/09/17 | 96           | 60 - 140  | 104        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1,1-Trichloroethane     | 2023/09/17 | 88           | 60 - 140  | 95         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |

Page 10 of 16



Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                     |            | Matrix Spike |           | SPIKED     | BLANK     | Method E | Blank | RPI       | 2         |
|----------|-------------------------------------|------------|--------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                           | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 8919789  | 1,1,2,2-Tetrachloroethane           | 2023/09/17 | 94           | 60 - 140  | 100        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1,2-Trichloroethane               | 2023/09/17 | 81           | 60 - 140  | 86         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1-Dichloroethane                  | 2023/09/17 | 84           | 60 - 140  | 90         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,1-Dichloroethylene                | 2023/09/17 | 79           | 60 - 140  | 85         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,2-Dichlorobenzene                 | 2023/09/17 | 92           | 60 - 140  | 101        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,2-Dichloroethane                  | 2023/09/17 | 78           | 60 - 140  | 84         | 60 - 130  | <0.049   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,2-Dichloropropane                 | 2023/09/17 | 85           | 60 - 140  | 91         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,3-Dichlorobenzene                 | 2023/09/17 | 90           | 60 - 140  | 101        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | 1,4-Dichlorobenzene                 | 2023/09/17 | 98           | 60 - 140  | 109        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Acetone (2-Propanone)               | 2023/09/17 | 81           | 60 - 140  | 84         | 60 - 140  | <0.49    | ug/g  | NC (1)    | 50        |
| 8919789  | Benzene                             | 2023/09/17 | 82           | 60 - 140  | 89         | 60 - 130  | <0.0060  | ug/g  | NC (1)    | 50        |
| 8919789  | Bromodichloromethane                | 2023/09/17 | 94           | 60 - 140  | 101        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Bromoform                           | 2023/09/17 | 90           | 60 - 140  | 97         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Bromomethane                        | 2023/09/17 | 86           | 60 - 140  | 93         | 60 - 140  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Carbon Tetrachloride                | 2023/09/17 | 88           | 60 - 140  | 96         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Chlorobenzene                       | 2023/09/17 | 94           | 60 - 140  | 103        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Chloroform                          | 2023/09/17 | 90           | 60 - 140  | 97         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | cis-1,2-Dichloroethylene            | 2023/09/17 | 89           | 60 - 140  | 97         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | cis-1,3-Dichloropropene             | 2023/09/17 | 85           | 60 - 140  | 93         | 60 - 130  | <0.030   | ug/g  | NC (1)    | 50        |
| 8919789  | Dibromochloromethane                | 2023/09/17 | 95           | 60 - 140  | 101        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Dichlorodifluoromethane (FREON 12)  | 2023/09/17 | 74           | 60 - 140  | 76         | 60 - 140  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Ethylbenzene                        | 2023/09/17 | 80           | 60 - 140  | 89         | 60 - 130  | <0.010   | ug/g  | NC (1)    | 50        |
| 8919789  | Ethylene Dibromide                  | 2023/09/17 | 95           | 60 - 140  | 101        | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | F1 (C6-C10) - BTEX                  | 2023/09/17 |              |           |            |           | <10      | ug/g  | NC (1)    | 30        |
| 8919789  | F1 (C6-C10)                         | 2023/09/17 | 95           | 60 - 140  | 91         | 80 - 120  | <10      | ug/g  | NC (1)    | 30        |
| 8919789  | Hexane                              | 2023/09/17 | 73           | 60 - 140  | 81         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Methyl Ethyl Ketone (2-Butanone)    | 2023/09/17 | 87           | 60 - 140  | 91         | 60 - 140  | <0.40    | ug/g  | NC (1)    | 50        |
| 8919789  | Methyl Isobutyl Ketone              | 2023/09/17 | 84           | 60 - 140  | 90         | 60 - 130  | <0.40    | ug/g  | NC (1)    | 50        |
| 8919789  | Methyl t-butyl ether (MTBE)         | 2023/09/17 | 90           | 60 - 140  | 97         | 60 - 130  | <0.040   | ug/g  | NC (1)    | 50        |
| 8919789  | Methylene Chloride(Dichloromethane) | 2023/09/17 | 89           | 60 - 140  | 96         | 60 - 130  | <0.049   | ug/g  | NC (1)    | 50        |
| 8919789  | o-Xylene                            | 2023/09/17 | 75           | 60 - 140  | 84         | 60 - 130  | <0.020   | ug/g  | NC (1)    | 50        |

Page 11 of 16



Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                   |            | Matrix Spike |           | SPIKED BLANK |           | Method Blank |       | RPD       |           |
|----------|-----------------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                         | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 8919789  | p+m-Xylene                        | 2023/09/17 | 83           | 60 - 140  | 93           | 60 - 130  | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | Styrene                           | 2023/09/17 | 92           | 60 - 140  | 103          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Tetrachloroethylene               | 2023/09/17 | 91           | 60 - 140  | 102          | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Toluene                           | 2023/09/17 | 81           | 60 - 140  | 88           | 60 - 130  | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | Total Xylenes                     | 2023/09/17 |              |           |              |           | <0.020       | ug/g  | NC (1)    | 50        |
| 8919789  | trans-1,2-Dichloroethylene        | 2023/09/17 | 83           | 60 - 140  | 93           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | trans-1,3-Dichloropropene         | 2023/09/17 | 85           | 60 - 140  | 92           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Trichloroethylene                 | 2023/09/17 | 94           | 60 - 140  | 103          | 60 - 130  | <0.010       | ug/g  | 7.7 (1)   | 50        |
| 8919789  | Trichlorofluoromethane (FREON 11) | 2023/09/17 | 87           | 60 - 140  | 92           | 60 - 130  | <0.040       | ug/g  | NC (1)    | 50        |
| 8919789  | Vinyl Chloride                    | 2023/09/17 | 93           | 60 - 140  | 102          | 60 - 130  | <0.019       | ug/g  | NC (1)    | 50        |
| 8921687  | Moisture                          | 2023/09/16 |              |           |              |           |              |       | 1.2 (1)   | 20        |
| 8922840  | Acid Extractable Antimony (Sb)    | 2023/09/18 | 95           | 75 - 125  | 98           | 80 - 120  | <0.20        | ug/g  |           |           |
| 8922840  | Acid Extractable Arsenic (As)     | 2023/09/18 | 100          | 75 - 125  | 98           | 80 - 120  | <1.0         | ug/g  |           |           |
| 8922840  | Acid Extractable Barium (Ba)      | 2023/09/18 | NC           | 75 - 125  | 96           | 80 - 120  | <0.50        | ug/g  |           |           |
| 8922840  | Acid Extractable Beryllium (Be)   | 2023/09/18 | 100          | 75 - 125  | 96           | 80 - 120  | <0.20        | ug/g  |           |           |
| 8922840  | Acid Extractable Boron (B)        | 2023/09/18 | 97           | 75 - 125  | 99           | 80 - 120  | <5.0         | ug/g  |           |           |
| 8922840  | Acid Extractable Cadmium (Cd)     | 2023/09/18 | 97           | 75 - 125  | 97           | 80 - 120  | <0.10        | ug/g  |           |           |
| 8922840  | Acid Extractable Chromium (Cr)    | 2023/09/18 | 105          | 75 - 125  | 97           | 80 - 120  | <1.0         | ug/g  |           |           |
| 8922840  | Acid Extractable Cobalt (Co)      | 2023/09/18 | 96           | 75 - 125  | 98           | 80 - 120  | <0.10        | ug/g  |           |           |
| 8922840  | Acid Extractable Copper (Cu)      | 2023/09/18 | 105          | 75 - 125  | 97           | 80 - 120  | <0.50        | ug/g  |           |           |
| 8922840  | Acid Extractable Lead (Pb)        | 2023/09/18 | NC           | 75 - 125  | 97           | 80 - 120  | <1.0         | ug/g  | 5.3 (1)   | 30        |
| 8922840  | Acid Extractable Molybdenum (Mo)  | 2023/09/18 | 97           | 75 - 125  | 95           | 80 - 120  | <0.50        | ug/g  |           |           |
| 8922840  | Acid Extractable Nickel (Ni)      | 2023/09/18 | 99           | 75 - 125  | 100          | 80 - 120  | <0.50        | ug/g  |           |           |
| 8922840  | Acid Extractable Selenium (Se)    | 2023/09/18 | 99           | 75 - 125  | 101          | 80 - 120  | <0.50        | ug/g  |           |           |
| 8922840  | Acid Extractable Silver (Ag)      | 2023/09/18 | 102          | 75 - 125  | 102          | 80 - 120  | <0.20        | ug/g  |           |           |
| 8922840  | Acid Extractable Thallium (TI)    | 2023/09/18 | 98           | 75 - 125  | 100          | 80 - 120  | <0.050       | ug/g  |           |           |
| 8922840  | Acid Extractable Uranium (U)      | 2023/09/18 | 97           | 75 - 125  | 97           | 80 - 120  | <0.050       | ug/g  |           |           |
| 8922840  | Acid Extractable Vanadium (V)     | 2023/09/18 | NC           | 75 - 125  | 96           | 80 - 120  | <5.0         | ug/g  |           |           |



Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                            | Matrix     | Spike      | SPIKED    | BLANK      | Method B  | lank  | RPD   |           |           |
|----------|----------------------------|------------|------------|-----------|------------|-----------|-------|-------|-----------|-----------|
| QC Batch | Parameter                  | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value | UNITS | Value (%) | QC Limits |
| 8922840  | Acid Extractable Zinc (Zn) | 2023/09/18 | NC         | 75 - 125  | 99         | 80 - 120  | <5.0  | ug/g  |           |           |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

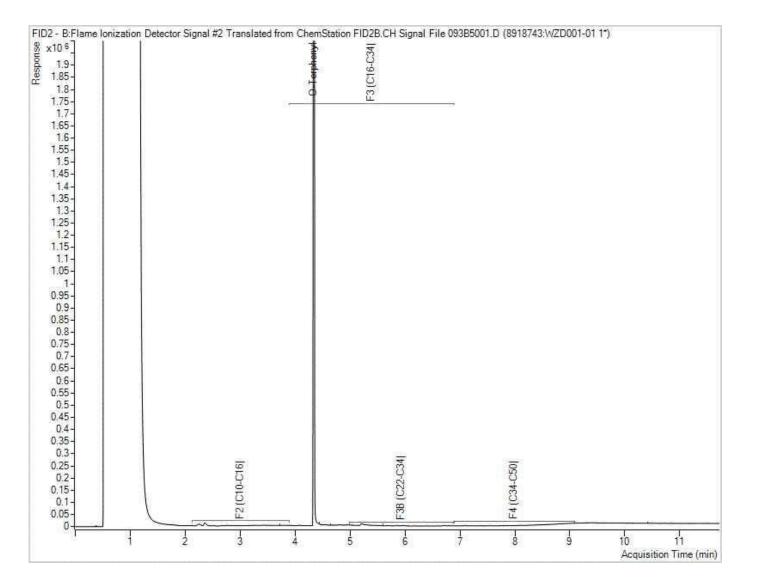
Page 13 of 16



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere


Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

| (O)                                                             | www.BVNA.com                                           | 6740 Campo<br>Phone: 905-4        |                                                             |                    |                                      |                       |                                  | e: 800-563-624               | 66             |                 |                         |           |         |                  |               |                            | сн                              |                     | of CUS<br>V COC |          |         |       |                  |        |                           |             |        | P             | age .                     | 1                      | of1                      | 1     |
|-----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|--------------------|--------------------------------------|-----------------------|----------------------------------|------------------------------|----------------|-----------------|-------------------------|-----------|---------|------------------|---------------|----------------------------|---------------------------------|---------------------|-----------------|----------|---------|-------|------------------|--------|---------------------------|-------------|--------|---------------|---------------------------|------------------------|--------------------------|-------|
| Invoice Inform                                                  | ation Invoice to (requires repo                        | n) 🗌                              |                                                             |                    | Report                               | informa               | tion (if                         | differs from inv             | voice)         |                 |                         |           |         |                  | -             | -                          | Projec                          | t Infor             | mation          | 1        |         |       | 7                |        |                           | _           |        |               |                           |                        |                          | -     |
| Company :                                                       | Keysbone Environ                                       | montal                            | Company:                                                    |                    |                                      |                       |                                  |                              |                |                 |                         | q         | luotati | ion #:           |               |                            |                                 |                     |                 |          |         |       | _                |        |                           |             |        |               |                           |                        |                          |       |
| Contact<br>Name:                                                | Job Mury                                               |                                   | Contact                                                     |                    |                                      |                       |                                  |                              |                |                 |                         | P         | .0.#/   | AFEI:            | 1             |                            |                                 |                     |                 |          |         |       | _                |        |                           | 13          | -S     | ep-2          | 3 17                      | :53                    |                          |       |
| Street                                                          | 6733 MISSISSAUGA                                       | 121                               | Name:<br>Street                                             | 1-                 |                                      |                       |                                  |                              | -              |                 | -                       | -         |         |                  | 1             | 0                          | 2.4                             |                     |                 |          |         |       | -                | Kı     | idra                      | at l        | Вяі    | Wa            |                           |                        |                          |       |
| Address:<br>City: No.                                           | SISSauge Prov: ON Cod                                  | LISN LIS                          | Address:<br>City:                                           | I                  |                                      |                       |                                  |                              | Post           | al T            | -                       | -         | roject  | #:               |               | 849                        |                                 | _                   |                 |          |         | _     | - 1              | 111    |                           |             |        | 1111          |                           |                        |                          |       |
| Phone:                                                          | SISJELICE Prov. ON Cod                                 | e: Concus                         |                                                             | -                  |                                      |                       | Prov:                            |                              | Cod            |                 | -                       | 5         | ite #:  |                  | 6             | 6F                         | ordi                            | 1011                | se              | Sive     | L       |       |                  |        | C                         | 25          | 15     | 96            |                           |                        |                          |       |
| Email:                                                          | 647-234-7241                                           |                                   | Phone:                                                      | -                  | _                                    | _                     |                                  |                              |                |                 | _                       |           | ite Loc |                  | T             | or                         | nto                             |                     |                 |          |         |       |                  |        | -                         |             | 1.     | 20            |                           |                        |                          |       |
| 17 10 10 1                                                      | mur @keysborenver                                      | onmenter                          | Email:                                                      | -                  |                                      |                       |                                  |                              |                |                 |                         |           | rovinc  |                  | 0             | N                          |                                 |                     |                 |          |         | _     | J                | DK     |                           |             | FN     | JV-2          | 008                       |                        |                          |       |
| Coples:                                                         | NI KARANGARAN MANA                                     |                                   | Copies:                                                     |                    |                                      |                       |                                  |                              |                | 1 - 1           | -                       | -         | ample   |                  |               | ĸ                          |                                 |                     |                 |          |         |       |                  |        |                           |             |        | v-2           | 11 215                    |                        |                          | _     |
| Table<br>Table<br>Table<br>Table                                | 1 K Res/Park Mee<br>2 Ind/Comm Cou<br>3 Agri/other For | nse<br>RSC<br>on Certificate of A | CME<br>keg 558*<br>min 3 day<br>MISA<br>WQO<br>nalysis (che | eck if ye          | Sani<br>Stor<br>Othe                 | m Sewi<br>Muni<br>Ir; | wer Byla<br>er Bylaw<br>cipality |                              |                | 2               | LAB FILTRATION REQUIRED | -         | 2       | and inorganics 9 | metals        | metals, HWS - B)           |                                 | 11 1                | 2 13            | 14       | 15 ]    | 16 17 | 18               | 19 2   | # OF CONTAINERS SUBMITTED | NOT ANALYZE | 5      | 5 to 7        | Day<br>sh Turnar<br>Surch | round Tim<br>arges app | 10 Day                   | A PAR |
|                                                                 |                                                        |                                   | The second                                                  | diam'              | 100                                  |                       |                                  | 8 - 9 8 B                    |                | VED             | ON RE                   |           |         | is and           |               |                            |                                 |                     |                 |          |         |       |                  |        | ERS 5                     | TAN         |        |               |                           |                        | зіляў                    |       |
| 1                                                               | Sample Identification                                  |                                   | Da                                                          | ite Samp           | oled                                 | Time                  | (24hr)                           |                              | FIELD FILTERED | FIELD PRESERVED | RATIC                   |           |         | Peg 153 metals   | Reg 153 ICPMS | 153 metals<br>Cr VI, ICPMS | I                               |                     |                 |          |         |       |                  |        | TAIN                      | DN OG       | Dat    | 4 Day         |                           | YY I                   | MM D                     | 00    |
| Marrie                                                          | Sample Identification                                  |                                   | YY                                                          | ММ                 | DD                                   | нн                    | мм                               | Matrix                       | IL OI          | LD PH           | FILT                    | ET L/XJ18 | F2 - F4 | 153              | 153           |                            |                                 |                     |                 |          |         |       |                  |        | CON                       | d-diot      |        | te<br>quired: |                           |                        |                          |       |
| 1 -                                                             |                                                        |                                   | -                                                           | -                  | -                                    |                       | -                                |                              | 8              | H               | 3                       | E         | œ 1     | Reg 1            | Reg           | Reg<br>(Hg                 | -                               | _                   | -               |          | _       | _     |                  | _      | 0 1                       | Ŷ           |        |               | Co                        | mments                 |                          |       |
| BH.                                                             | 2-552                                                  |                                   | 2023                                                        | 09                 | 13                                   | 3                     | 30                               | Soil                         |                |                 |                         |           |         |                  | X             |                            | X                               |                     |                 |          |         |       |                  |        |                           |             |        |               |                           |                        |                          |       |
| 2 BH                                                            | 5-552                                                  |                                   | 1                                                           | 1                  | 1                                    | 4                     | 00                               | 1                            |                |                 |                         |           |         |                  | X             |                            | X                               |                     |                 |          |         |       |                  |        |                           |             |        |               |                           |                        |                          |       |
|                                                                 | 5-554                                                  |                                   |                                                             |                    | 1.                                   | 4                     | 00                               | V                            |                |                 |                         | X         | ~ `     | X                |               |                            |                                 | +                   | +               | H        | +       | +     |                  | -      | +                         | t           | +      | _             |                           |                        |                          | -     |
| 4                                                               | 2 324                                                  |                                   | - Y                                                         | *                  | ~                                    | '                     |                                  |                              | -              |                 | -                       |           | ~       | ~                | -             |                            |                                 | -                   | +-              | $\vdash$ | -       | +     | $\left  \right $ |        | +                         | +           | +      |               |                           |                        |                          | _     |
| -                                                               |                                                        |                                   |                                                             |                    | -                                    |                       |                                  |                              |                |                 | 1                       | 4         | _       | _                |               |                            |                                 | _                   | -               |          |         | _     |                  |        |                           |             |        |               |                           |                        |                          |       |
| 5                                                               |                                                        |                                   |                                                             |                    |                                      |                       |                                  |                              | 12             |                 |                         |           |         |                  |               |                            |                                 |                     |                 |          |         |       |                  |        |                           |             |        |               |                           |                        |                          |       |
| 6                                                               |                                                        |                                   |                                                             |                    |                                      |                       |                                  |                              |                |                 |                         |           |         |                  |               |                            |                                 |                     |                 |          |         |       |                  |        |                           |             |        |               |                           |                        |                          |       |
| 7                                                               |                                                        |                                   |                                                             |                    | 1                                    |                       |                                  |                              | 1              |                 |                         |           | +       | +                |               |                            |                                 | +                   | -               | $\vdash$ | -       | +     | $\left  \right $ |        | +                         | ⊢           | +      |               |                           |                        |                          | -     |
| 8                                                               |                                                        |                                   | -                                                           | -                  | +                                    | -                     |                                  |                              | +              |                 | -                       |           | +       | +                | -             | $\left  \right $           |                                 | +                   | +-              | $\vdash$ | -       | -     | $\left  \right $ | _      | +                         | -           | +      |               |                           |                        |                          | _     |
| -                                                               |                                                        |                                   | -                                                           | -                  | -                                    |                       |                                  |                              | 1              |                 | _                       |           |         | -                |               |                            |                                 |                     |                 |          |         |       |                  |        | 1                         |             |        |               |                           |                        |                          |       |
| 9                                                               |                                                        |                                   |                                                             |                    |                                      |                       |                                  |                              |                |                 |                         |           |         |                  |               |                            |                                 |                     |                 |          |         |       |                  |        | 1                         |             |        |               |                           |                        |                          |       |
| 10                                                              |                                                        |                                   |                                                             |                    |                                      |                       |                                  |                              |                |                 |                         |           |         |                  |               |                            |                                 |                     | 1               |          |         |       | H                |        |                           | t           |        |               |                           |                        |                          | -     |
| 11                                                              |                                                        |                                   |                                                             |                    | 1                                    |                       |                                  |                              | 1              |                 | -                       | -         | +       | +                | -             | $\vdash$                   |                                 | +                   | +               | $\vdash$ | -       | +     |                  |        | -                         | -           | +      |               |                           |                        |                          | -     |
| 12                                                              |                                                        |                                   | -                                                           | -                  | -                                    |                       |                                  |                              | -              |                 | -                       | ++        | +       | -                |               |                            |                                 | _                   | +               |          | _       | -     |                  | _      | -                         | -           | +      |               |                           |                        |                          |       |
|                                                                 |                                                        |                                   |                                                             |                    |                                      |                       |                                  |                              |                |                 |                         |           |         |                  |               |                            |                                 |                     |                 |          |         |       |                  |        |                           |             |        |               |                           |                        |                          |       |
| UNLESS OTHE                                                     | RWISE AGREED TO IN WRITING, WORK SL                    | BMITTED ON THIS                   | CHAIN OF                                                    | CUSTOR             | IS SUB                               | JECT TO               | BUREA                            | U VERITAS STA<br>BVNA.COM/TE | NDARE          | TERM            | SAND                    | COND      | TION    | SIGN             | NGO           | THIS                       | CHAIN C                         | OF CUST             | TODY D          | DCUME    | NT IS A | CKNOW | LEDGM            | ENT AN | D ACCE                    | PTAN        | VCE OI | FOURTE        | RMS AND                   | CONDITI                | ONS WHICH A              | ARE   |
| LAB US<br>Seal present<br>Seal Intact<br>Cooling media<br>Rolin |                                                        | 23 20<br>1 2                      | 222                                                         | Seal pr<br>Seal in | LAB USI<br>resent<br>tact<br>g media | E ONLY                |                                  |                              | No             |                 |                         |           | 2       |                  | 3             |                            | Seal pre<br>Seal int<br>Cooling | LA<br>esent<br>tact | b USE C         | DNLY     | ALL ALL |       | /es              | No     |                           | 'n          | 1      | 2             |                           | 3<br>structions        | Temperatur<br>reading by |       |
| A .                                                             | A                                                      |                                   |                                                             | 00                 | нн                                   | N                     | IM                               | ILLA                         |                | _               |                         | gnatur    |         | 535              | 110           | -                          |                                 | YY                  |                 | MM       | -       | PD    |                  | 1      | MM                        | 1           | -      | 3             | Pecal In                  | attraction's           |                          | -     |
| $\frac{1}{2}$                                                   | hay ll                                                 | 2072 0                            | 29 13                                                       | 3 -                | 5                                    | 00                    |                                  | HEY.                         | £4             | W               | 1                       | ØLI       | 11      | OV.              | L             | 41                         | 2                               | 13                  | 10              | 29       | -       | 13    | 17               | 13     | 3                         |             |        |               |                           |                        | C                        |       |

Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH5-SS4

### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram





Your Project #: 18494 Site Location: 66 FORDHOUSE BLVD Your C.O.C. #: n/a

#### Attention: Jeff Muir

Keystone Environmental 6733 Mississauga Road Suite 700 Mississauga, ON Canada

> Report Date: 2023/09/21 Report #: R7824918 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

## BUREAU VERITAS JOB #: C3S5089

Received: 2023/09/15, 13:14

Sample Matrix: Soil # Samples Received: 8

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Methylnaphthalene Sum                    | 4        | N/A        | 2023/09/21 | CAM SOP-00301     | EPA 8270D m          |
| 1,3-Dichloropropene Sum                  | 4        | N/A        | 2023/09/19 |                   | EPA 8260C m          |
| Petroleum Hydrocarbons F2-F4 in Soil (1) | 4        | 2023/09/18 | 2023/09/19 | CAM SOP-00316     | CCME CWS m           |
| Acid Extractable Metals by ICPMS         | 4        | 2023/09/19 | 2023/09/19 | CAM SOP-00447     | EPA 6020B m          |
| Moisture                                 | 8        | N/A        | 2023/09/18 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PAH Compounds in Soil by GC/MS (SIM)     | 4        | 2023/09/17 | 2023/09/19 | CAM SOP-00318     | EPA 8270E            |
| Volatile Organic Compounds and F1 PHCs   | 4        | N/A        | 2023/09/19 | CAM SOP-00230     | EPA 8260C m          |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003".

Page 1 of 20



Your Project #: 18494 Site Location: 66 FORDHOUSE BLVD Your C.O.C. #: n/a

#### **Attention: Jeff Muir**

Keystone Environmental 6733 Mississauga Road Suite 700 Mississauga, ON Canada

> Report Date: 2023/09/21 Report #: R7824918 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

### BUREAU VERITAS JOB #: C3S5089

### Received: 2023/09/15, 13:14

Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Kudrat Bajwa, B.Sc., Project Manager Email: Kudrat.Bajwa@bureauveritas.com Phone# (905)817-5755

-----

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



## **O.REG 153 ICPMS METALS (SOIL)**

| Bureau Veritas ID                |       | WZU355     | WZU357     | WZU359     | WZU359             | WZU361     |       |          |
|----------------------------------|-------|------------|------------|------------|--------------------|------------|-------|----------|
| Sampling Date                    |       | 2023/09/15 | 2023/09/15 | 2023/09/15 | 2023/09/15         | 2023/09/15 |       |          |
|                                  |       | 10:00      | 10:45      | 11:30      | 11:30              | 12:30      |       |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a                | n/a        |       |          |
|                                  | UNITS | BH7-SS2    | BH8-SS2    | BH6-SS1    | BH6-SS1<br>Lab-Dup | BH12-SS1   | RDL   | QC Batch |
| Metals                           |       |            |            |            |                    |            |       |          |
| Acid Extractable Antimony (Sb)   | ug/g  | 0.22       | <0.20      | 0.42       | 0.35               | 0.70       | 0.20  | 8925366  |
| Acid Extractable Arsenic (As)    | ug/g  | 14         | 5.5        | 4.1        | 4.0                | 5.2        | 1.0   | 8925366  |
| Acid Extractable Barium (Ba)     | ug/g  | 87         | 84         | 73         | 72                 | 110        | 0.50  | 8925366  |
| Acid Extractable Beryllium (Be)  | ug/g  | 1.2        | 0.85       | 0.44       | 0.44               | 0.38       | 0.20  | 8925366  |
| Acid Extractable Boron (B)       | ug/g  | 13         | 8.8        | 6.6        | 6.2                | 9.2        | 5.0   | 8925366  |
| Acid Extractable Cadmium (Cd)    | ug/g  | <0.10      | <0.10      | 0.46       | 0.46               | 0.59       | 0.10  | 8925366  |
| Acid Extractable Chromium (Cr)   | ug/g  | 31         | 23         | 16         | 15                 | 18         | 1.0   | 8925366  |
| Acid Extractable Cobalt (Co)     | ug/g  | 21         | 12         | 6.3        | 6.2                | 5.0        | 0.10  | 8925366  |
| Acid Extractable Copper (Cu)     | ug/g  | 25         | 21         | 27         | 26                 | 29         | 0.50  | 8925366  |
| Acid Extractable Lead (Pb)       | ug/g  | 3.9        | 3.0        | 40         | 39                 | 82         | 1.0   | 8925366  |
| Acid Extractable Molybdenum (Mo) | ug/g  | <0.50      | <0.50      | 0.82       | 0.77               | 1.4        | 0.50  | 8925366  |
| Acid Extractable Nickel (Ni)     | ug/g  | 42         | 25         | 14         | 14                 | 13         | 0.50  | 8925366  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50      | <0.50      | <0.50      | <0.50              | <0.50      | 0.50  | 8925366  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20      | <0.20      | <0.20      | <0.20              | <0.20      | 0.20  | 8925366  |
| Acid Extractable Thallium (Tl)   | ug/g  | 0.14       | 0.097      | 0.089      | 0.082              | 0.085      | 0.050 | 8925366  |
| Acid Extractable Uranium (U)     | ug/g  | 0.51       | 0.37       | 0.41       | 0.42               | 0.47       | 0.050 | 8925366  |
| Acid Extractable Vanadium (V)    | ug/g  | 40         | 30         | 24         | 24                 | 21         | 5.0   | 8925366  |
| Acid Extractable Zinc (Zn)       | ug/g  | 78         | 50         | 98         | 96                 | 180        | 5.0   | 8925366  |
| RDL = Reportable Detection Limit |       |            |            |            |                    |            |       |          |

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

# O.REG 153 PAHS (SOIL)

| Bureau Veritas ID         |       | WZU355     | WZU357     | WZU359     | WZU361     |        |          |
|---------------------------|-------|------------|------------|------------|------------|--------|----------|
| Sampling Date             |       | 2023/09/15 | 2023/09/15 | 2023/09/15 | 2023/09/15 |        |          |
| Sampling Date             |       | 10:00      | 10:45      | 11:30      | 12:30      |        |          |
| COC Number                |       | n/a        | n/a        | n/a        | n/a        |        |          |
|                           | UNITS | BH7-SS2    | BH8-SS2    | BH6-SS1    | BH12-SS1   | RDL    | QC Batch |
| Calculated Parameters     |       |            |            |            |            |        |          |
| Methylnaphthalene, 2-(1-) | ug/g  | <0.0071    | <0.0071    | <0.0071    | 0.014      | 0.0071 | 8921005  |
| Polyaromatic Hydrocarbons |       |            |            |            |            |        |          |
| Acenaphthene              | ug/g  | <0.0050    | <0.0050    | 0.012      | 0.0066     | 0.0050 | 8922492  |
| Acenaphthylene            | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0081     | 0.0050 | 8922492  |
| Anthracene                | ug/g  | <0.0050    | <0.0050    | 0.023      | 0.023      | 0.0050 | 8922492  |
| Benzo(a)anthracene        | ug/g  | <0.0050    | <0.0050    | 0.091      | 0.089      | 0.0050 | 8922492  |
| Benzo(a)pyrene            | ug/g  | <0.0050    | <0.0050    | 0.097      | 0.091      | 0.0050 | 8922492  |
| Benzo(b/j)fluoranthene    | ug/g  | <0.0050    | <0.0050    | 0.13       | 0.13       | 0.0050 | 8922492  |
| Benzo(g,h,i)perylene      | ug/g  | <0.0050    | <0.0050    | 0.080      | 0.069      | 0.0050 | 8922492  |
| Benzo(k)fluoranthene      | ug/g  | <0.0050    | <0.0050    | 0.048      | 0.042      | 0.0050 | 8922492  |
| Chrysene                  | ug/g  | <0.0050    | <0.0050    | 0.080      | 0.076      | 0.0050 | 8922492  |
| Dibenzo(a,h)anthracene    | ug/g  | <0.0050    | <0.0050    | 0.019      | 0.016      | 0.0050 | 8922492  |
| Fluoranthene              | ug/g  | <0.0050    | <0.0050    | 0.24       | 0.19       | 0.0050 | 8922492  |
| Fluorene                  | ug/g  | <0.0050    | <0.0050    | 0.014      | 0.0078     | 0.0050 | 8922492  |
| Indeno(1,2,3-cd)pyrene    | ug/g  | <0.0050    | <0.0050    | 0.079      | 0.069      | 0.0050 | 8922492  |
| 1-Methylnaphthalene       | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0069     | 0.0050 | 8922492  |
| 2-Methylnaphthalene       | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0069     | 0.0050 | 8922492  |
| Naphthalene               | ug/g  | <0.0050    | <0.0050    | <0.0050    | 0.0065     | 0.0050 | 8922492  |
| Phenanthrene              | ug/g  | <0.0050    | <0.0050    | 0.13       | 0.089      | 0.0050 | 8922492  |
| Pyrene                    | ug/g  | <0.0050    | <0.0050    | 0.19       | 0.16       | 0.0050 | 8922492  |
| Surrogate Recovery (%)    |       |            |            |            |            |        |          |
| D10-Anthracene            | %     | 94         | 96         | 94         | 95         |        | 8922492  |
| D14-Terphenyl (FS)        | %     | 97         | 98         | 103        | 105        |        | 8922492  |
| D8-Acenaphthylene         | %     | 85         | 83         | 87         | 89         |        | 8922492  |



## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                   |       | WZU356     | WZU358     | WZU360     | WZU362     |        |          |
|-------------------------------------|-------|------------|------------|------------|------------|--------|----------|
| Sampling Date                       |       | 2023/09/15 | 2023/09/15 | 2023/09/15 | 2023/09/15 |        |          |
|                                     |       | 10:15      | 11:00      | 11:45      | 12:30      |        |          |
| COC Number                          |       | n/a        | n/a        | n/a        | n/a        |        |          |
|                                     | UNITS | BH7-SS4    | BH8-SS4    | BH6-SS4    | BH12-SS3   | RDL    | QC Batch |
| Calculated Parameters               |       |            |            |            |            |        |          |
| 1,3-Dichloropropene (cis+trans)     | ug/g  | <0.050     | <0.050     | <0.050     | <0.050     | 0.050  | 8921169  |
| Volatile Organics                   |       |            |            | -          |            | -      |          |
| Acetone (2-Propanone)               | ug/g  | <0.49      | <0.49      | <0.49      | <0.49      | 0.49   | 8922601  |
| Benzene                             | ug/g  | <0.0060    | <0.0060    | <0.0060    | <0.0060    | 0.0060 | 8922601  |
| Bromodichloromethane                | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Bromoform                           | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Bromomethane                        | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Carbon Tetrachloride                | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Chlorobenzene                       | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Chloroform                          | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Dibromochloromethane                | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| 1,2-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| 1,3-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| 1,4-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Dichlorodifluoromethane (FREON 12)  | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| 1,1-Dichloroethane                  | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| 1,2-Dichloroethane                  | ug/g  | <0.049     | <0.049     | <0.049     | <0.049     | 0.049  | 8922601  |
| 1,1-Dichloroethylene                | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| cis-1,2-Dichloroethylene            | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| trans-1,2-Dichloroethylene          | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| 1,2-Dichloropropane                 | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| cis-1,3-Dichloropropene             | ug/g  | <0.030     | <0.030     | <0.030     | <0.030     | 0.030  | 8922601  |
| trans-1,3-Dichloropropene           | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Ethylbenzene                        | ug/g  | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 8922601  |
| Ethylene Dibromide                  | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Hexane                              | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Methylene Chloride(Dichloromethane) | ug/g  | <0.049     | <0.049     | <0.049     | <0.049     | 0.049  | 8922601  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/g  | <0.40      | <0.40      | <0.40      | <0.40      | 0.40   | 8922601  |
| Methyl Isobutyl Ketone              | ug/g  | <0.40      | <0.40      | <0.40      | <0.40      | 0.40   | 8922601  |
| Methyl t-butyl ether (MTBE)         | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| Styrene                             | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040  | 8922601  |
| RDL = Reportable Detection Limit    |       |            |            |            |            |        | -        |
| QC Batch = Quality Control Batch    |       |            |            |            |            |        |          |



# O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                                                    |       | WZU356     | WZU358     | WZU360     | WZU362     |       |          |
|----------------------------------------------------------------------|-------|------------|------------|------------|------------|-------|----------|
| Sampling Date                                                        |       | 2023/09/15 | 2023/09/15 | 2023/09/15 | 2023/09/15 |       |          |
|                                                                      |       | 10:15      | 11:00      | 11:45      | 12:30      |       |          |
| COC Number                                                           |       | n/a        | n/a        | n/a        | n/a        |       |          |
|                                                                      | UNITS | BH7-SS4    | BH8-SS4    | BH6-SS4    | BH12-SS3   | RDL   | QC Batch |
| 1,1,1,2-Tetrachloroethane                                            | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040 | 8922601  |
| 1,1,2,2-Tetrachloroethane                                            | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040 | 8922601  |
| Tetrachloroethylene                                                  | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040 | 8922601  |
| Toluene                                                              | ug/g  | <0.020     | <0.020     | <0.020     | <0.020     | 0.020 | 8922601  |
| 1,1,1-Trichloroethane                                                | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040 | 8922601  |
| 1,1,2-Trichloroethane                                                | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040 | 8922601  |
| Trichloroethylene                                                    | ug/g  | <0.010     | <0.010     | <0.010     | <0.010     | 0.010 | 8922601  |
| Trichlorofluoromethane (FREON 11)                                    | ug/g  | <0.040     | <0.040     | <0.040     | <0.040     | 0.040 | 8922601  |
| Vinyl Chloride                                                       | ug/g  | <0.019     | <0.019     | <0.019     | <0.019     | 0.019 | 8922601  |
| p+m-Xylene                                                           | ug/g  | <0.020     | <0.020     | <0.020     | <0.020     | 0.020 | 8922601  |
| o-Xylene                                                             | ug/g  | <0.020     | <0.020     | <0.020     | <0.020     | 0.020 | 8922601  |
| Total Xylenes                                                        | ug/g  | <0.020     | <0.020     | <0.020     | <0.020     | 0.020 | 8922601  |
| F1 (C6-C10)                                                          | ug/g  | <10        | <10        | <10        | <10        | 10    | 8922601  |
| F1 (C6-C10) - BTEX                                                   | ug/g  | <10        | <10        | <10        | <10        | 10    | 8922601  |
| F2-F4 Hydrocarbons                                                   |       |            |            |            |            |       |          |
| F2 (C10-C16 Hydrocarbons)                                            | ug/g  | <10        | <10        | <10        | <10        | 10    | 8922837  |
| F3 (C16-C34 Hydrocarbons)                                            | ug/g  | <50        | <50        | <50        | <50        | 50    | 8922837  |
| F4 (C34-C50 Hydrocarbons)                                            | ug/g  | <50        | <50        | <50        | <50        | 50    | 8922837  |
| Reached Baseline at C50                                              | ug/g  | Yes        | Yes        | Yes        | Yes        |       | 8922837  |
| Surrogate Recovery (%)                                               | -     |            |            |            |            |       | •        |
| o-Terphenyl                                                          | %     | 98         | 97         | 99         | 94         |       | 8922837  |
| 4-Bromofluorobenzene                                                 | %     | 96         | 96         | 98         | 98         |       | 8922601  |
| D10-o-Xylene                                                         | %     | 104        | 103        | 96         | 95         |       | 8922601  |
| D4-1,2-Dichloroethane                                                | %     | 100        | 101        | 102        | 101        |       | 8922601  |
| D8-Toluene                                                           | %     | 95         | 94         | 93         | 92         |       | 8922601  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |            | -          |            |       |          |



# **RESULTS OF ANALYSES OF SOIL**

|       | WZU355     | WZU356                                              | WZU357                                                                                                                                                                  | WZU358                                                                                                                                                                                                                                          | WZU359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WZU360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WZU361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2023/09/15 | 2023/09/15                                          | 2023/09/15                                                                                                                                                              | 2023/09/15                                                                                                                                                                                                                                      | 2023/09/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2023/09/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2023/09/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 10:00      | 10:15                                               | 10:45                                                                                                                                                                   | 11:00                                                                                                                                                                                                                                           | 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | n/a        | n/a                                                 | n/a                                                                                                                                                                     | n/a                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UNITS | BH7-SS2    | BH7-SS4                                             | BH8-SS2                                                                                                                                                                 | BH8-SS4                                                                                                                                                                                                                                         | BH6-SS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BH6-SS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH12-SS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |            |                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| %     | 15         | 12                                                  | 17                                                                                                                                                                      | 12                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8923317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| imit  |            |                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | %          | 2023/09/15<br>10:00<br>n/a<br>UNITS BH7-SS2<br>% 15 | 2023/09/15         2023/09/15           10:00         10:15           n/a         n/a           UNITS         BH7-SS2         BH7-SS4           %         15         12 | 2023/09/15         2023/09/15         2023/09/15           10:00         10:15         10:45           n/a         n/a         n/a           UNITS         BH7-SS2         BH7-SS4         BH8-SS2           %         15         12         17 | 2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         11:00         11:00         11:00         11:00         11:00         11:00         11:00         10:45         11:00         10:45         11:00         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05         10:05 | 2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         11:00         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11:30         11: | 2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45         11:45 <th>2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09</th> <th>2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         12:30         1           MITS         BH7-SS2         BH7-SS4         BH8-SS2         BH8-SS4         BH6-SS1         BH6-SS4         BH12-SS1         RDL           %         15         12         17         12         11         12         23         1.0</th> | 2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09 | 2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         2023/09/15         12:30         1           MITS         BH7-SS2         BH7-SS4         BH8-SS2         BH8-SS4         BH6-SS1         BH6-SS4         BH12-SS1         RDL           %         15         12         17         12         11         12         23         1.0 |

QC Batch = Quality Control Batch

| Bureau Veritas ID      |            | WZU362              |     |          |  |  |  |  |  |  |  |
|------------------------|------------|---------------------|-----|----------|--|--|--|--|--|--|--|
| Sampling Date          |            | 2023/09/15<br>12:30 |     |          |  |  |  |  |  |  |  |
| COC Number             |            | n/a                 |     |          |  |  |  |  |  |  |  |
|                        | UNITS      | BH12-SS3            | RDL | QC Batch |  |  |  |  |  |  |  |
|                        | Inorganics |                     |     |          |  |  |  |  |  |  |  |
| Inorganics             |            |                     |     |          |  |  |  |  |  |  |  |
| Inorganics<br>Moisture | %          | 12                  | 1.0 | 8923317  |  |  |  |  |  |  |  |



### **TEST SUMMARY**

| Bureau Veritas ID: | WZU355  |
|--------------------|---------|
| Sample ID:         | BH7-SS2 |
| Matrix:            | Soil    |

| Collected:            | 2023/09/15 |
|-----------------------|------------|
| Shipped:<br>Received: | 2023/09/15 |

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8921005 | N/A        | 2023/09/21    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8925366 | 2023/09/19 | 2023/09/19    | Prempal Bhatti    |
| Moisture                             | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani Desai     |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8922492 | 2023/09/17 | 2023/09/19    | Mitesh Raj        |

| Bureau Veritas ID: | WZU356  |
|--------------------|---------|
| Sample ID:         | BH7-SS4 |
| Matrix:            | Soil    |

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst               |
|----------------------------------------|-----------------|---------|------------|---------------|-----------------------|
| 1,3-Dichloropropene Sum                | CALC            | 8921169 | N/A        | 2023/09/19    | Automated Statchk     |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 8922837 | 2023/09/18 | 2023/09/19    | Jeevaraj Jeevaratrnam |
| Moisture                               | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani Desai         |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 8922601 | N/A        | 2023/09/19    | Dina Wang             |

| Bureau Veritas ID: | WZU357  |
|--------------------|---------|
| Sample ID:         | BH8-SS2 |
| Matrix:            | Soil    |

| Collected: | 2023/09/15 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2023/09/15 |

Collected: 2023/09/15

Received: 2023/09/15

Shipped:

Collected:

Shipped:

2023/09/15

**Received:** 2023/09/15

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8921005 | N/A        | 2023/09/21    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8925366 | 2023/09/19 | 2023/09/19    | Prempal Bhatti    |
| Moisture                             | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani Desai     |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8922492 | 2023/09/17 | 2023/09/19    | Mitesh Raj        |

| Bureau Veritas ID: | WZU358 | Collected: | 2023/09/15 |
|--------------------|--------|------------|------------|
| Sample ID:         |        | Shipped:   |            |
| Matrix:            | Soil   | Received:  | 2023/09/15 |
|                    |        |            |            |

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst               |
|----------------------------------------|-----------------|---------|------------|---------------|-----------------------|
| 1,3-Dichloropropene Sum                | CALC            | 8921169 | N/A        | 2023/09/19    | Automated Statchk     |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 8922837 | 2023/09/18 | 2023/09/19    | Jeevaraj Jeevaratrnam |
| Moisture                               | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani Desai         |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 8922601 | N/A        | 2023/09/19    | Dina Wang             |

Bureau Veritas ID: WZU359 Sample ID: BH6-SS1 Matrix: Soil

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|--------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                | CALC            | 8921005 | N/A        | 2023/09/21    | Automated Statchk |
| Acid Extractable Metals by ICPMS     | ICP/MS          | 8925366 | 2023/09/19 | 2023/09/19    | Prempal Bhatti    |
| Moisture                             | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani Desai     |
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 8922492 | 2023/09/17 | 2023/09/19    | Mitesh Raj        |

Page 8 of 20

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.



### **TEST SUMMARY**

| Bureau Veritas ID:<br>Sample ID:                  | BH6-SS1                    |                 |         |            |               | Collected:<br>Shipped:              |                          |
|---------------------------------------------------|----------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Matrix:                                           | Soil                       |                 |         |            |               | Received:                           | 2023/09/15               |
| Test Description                                  |                            | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Acid Extractable Metals b                         | y ICPMS                    | ICP/MS          | 8925366 | 2023/09/19 | 2023/09/19    | Prempal B                           | hatti                    |
| Bureau Veritas ID:<br>Sample ID:<br>Matrix:       | BH6-SS4                    |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2023/09/15<br>2023/09/15 |
| Test Description                                  |                            | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| 1,3-Dichloropropene Sum                           | l                          | CALC            | 8921169 | N/A        | 2023/09/19    | Automated                           | l Statchk                |
| Petroleum Hydrocarbons                            | F2-F4 in Soil              | GC/FID          | 8922837 | 2023/09/18 | 2023/09/19    | Jeevaraj Je                         | evaratrnam               |
| Moisture                                          |                            | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani De                          | sai                      |
| Volatile Organic Compour                          | nds and F1 PHCs            | GC/MSFD         | 8922601 | N/A        | 2023/09/19    | Dina Wang                           |                          |
| Bureau Veritas ID:<br>Sample ID:<br>Matrix:       | WZU361<br>BH12-SS1<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2023/09/15<br>2023/09/15 |
| Test Description                                  |                            | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Methylnaphthalene Sum                             |                            | CALC            | 8921005 | N/A        | 2023/09/21    | Automated                           | d Statchk                |
| Acid Extractable Metals b                         | y ICPMS                    | ICP/MS          | 8925366 | 2023/09/19 | 2023/09/19    | Prempal B                           | natti                    |
| Moisture                                          |                            | BAL             | 8923317 | N/A        | 2023/09/18    | Shivani De                          | sai                      |
| PAH Compounds in Soil by                          | y GC/MS (SIM)              | GC/MS           | 8922492 | 2023/09/17 | 2023/09/19    | Mitesh Raj                          |                          |
| Bureau Veritas ID:<br>Sample ID:<br>Matrix:       | WZU362<br>BH12-SS3<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2023/09/15<br>2023/09/15 |
| Test Description                                  |                            | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
|                                                   |                            | CALC            | 8921169 | N/A        | 2023/09/19    | Automate                            | 1 Statchk                |
| 1,3-Dichloropropene Sum                           | l                          | CALC            | 8921169 | N/A        | 2023/03/13    | , laternater                        | statem                   |
| 1,3-Dichloropropene Sum<br>Petroleum Hydrocarbons |                            | GC/FID          | 8921169 | 2023/09/18 | 2023/09/19    |                                     | evaratrnam               |
| ,                                                 |                            |                 |         | ,          |               |                                     | evaratrnam               |



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 21.3°C

Results relate only to the items tested.



# QUALITY ASSURANCE REPORT

Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                           |            | Matrix Spike |           | SPIKED     | BLANK     | NK Method Blank |       | RPD       |           |
|----------|---------------------------|------------|--------------|-----------|------------|-----------|-----------------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value           | UNITS | Value (%) | QC Limits |
| 8922492  | D10-Anthracene            | 2023/09/18 | 87           | 50 - 130  | 95         | 50 - 130  | 98              | %     |           |           |
| 8922492  | D14-Terphenyl (FS)        | 2023/09/18 | 98           | 50 - 130  | 103        | 50 - 130  | 96              | %     |           |           |
| 8922492  | D8-Acenaphthylene         | 2023/09/18 | 95           | 50 - 130  | 87         | 50 - 130  | 82              | %     |           |           |
| 8922601  | 4-Bromofluorobenzene      | 2023/09/18 | 100          | 60 - 140  | 103        | 60 - 140  | 97              | %     |           |           |
| 8922601  | D10-o-Xylene              | 2023/09/18 | 114          | 60 - 130  | 99         | 60 - 130  | 101             | %     |           |           |
| 8922601  | D4-1,2-Dichloroethane     | 2023/09/18 | 94           | 60 - 140  | 93         | 60 - 140  | 99              | %     |           |           |
| 8922601  | D8-Toluene                | 2023/09/18 | 104          | 60 - 140  | 103        | 60 - 140  | 94              | %     |           |           |
| 8922837  | o-Terphenyl               | 2023/09/18 | 95           | 60 - 130  | 94         | 60 - 130  | 95              | %     |           |           |
| 8922492  | 1-Methylnaphthalene       | 2023/09/18 | 109          | 50 - 130  | 99         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | 2-Methylnaphthalene       | 2023/09/18 | 101          | 50 - 130  | 91         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Acenaphthene              | 2023/09/18 | 93           | 50 - 130  | 89         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Acenaphthylene            | 2023/09/18 | 89           | 50 - 130  | 83         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Anthracene                | 2023/09/18 | 95           | 50 - 130  | 90         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Benzo(a)anthracene        | 2023/09/18 | 93           | 50 - 130  | 86         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Benzo(a)pyrene            | 2023/09/18 | 86           | 50 - 130  | 85         | 50 - 130  | <0.0050         | ug/g  | 5.0 (1)   | 40        |
| 8922492  | Benzo(b/j)fluoranthene    | 2023/09/18 | 87           | 50 - 130  | 91         | 50 - 130  | <0.0050         | ug/g  | 12 (1)    | 40        |
| 8922492  | Benzo(g,h,i)perylene      | 2023/09/18 | 94           | 50 - 130  | 84         | 50 - 130  | <0.0050         | ug/g  | 12 (1)    | 40        |
| 8922492  | Benzo(k)fluoranthene      | 2023/09/18 | 94           | 50 - 130  | 88         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Chrysene                  | 2023/09/18 | 93           | 50 - 130  | 88         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Dibenzo(a,h)anthracene    | 2023/09/18 | 92           | 50 - 130  | 79         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Fluoranthene              | 2023/09/18 | 101          | 50 - 130  | 96         | 50 - 130  | <0.0050         | ug/g  | 13 (1)    | 40        |
| 8922492  | Fluorene                  | 2023/09/18 | 90           | 50 - 130  | 87         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Indeno(1,2,3-cd)pyrene    | 2023/09/18 | 90           | 50 - 130  | 86         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Naphthalene               | 2023/09/18 | 96           | 50 - 130  | 83         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Phenanthrene              | 2023/09/18 | 90           | 50 - 130  | 86         | 50 - 130  | <0.0050         | ug/g  | NC (1)    | 40        |
| 8922492  | Pyrene                    | 2023/09/18 | 98           | 50 - 130  | 98         | 50 - 130  | <0.0050         | ug/g  | 13 (1)    | 40        |
| 8922601  | 1,1,1,2-Tetrachloroethane | 2023/09/19 | 97           | 60 - 140  | 97         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8922601  | 1,1,1-Trichloroethane     | 2023/09/19 | 100          | 60 - 140  | 99         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8922601  | 1,1,2,2-Tetrachloroethane | 2023/09/19 | 92           | 60 - 140  | 94         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8922601  | 1,1,2-Trichloroethane     | 2023/09/19 | 92           | 60 - 140  | 91         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |
| 8922601  | 1,1-Dichloroethane        | 2023/09/19 | 98           | 60 - 140  | 97         | 60 - 130  | <0.040          | ug/g  | NC (1)    | 50        |

Page 11 of 20



Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                     |            | Matrix Spike |           | SPIKED     | SPIKED BLANK Method |         | /lethod Blank |           | RPD       |  |
|----------|-------------------------------------|------------|--------------|-----------|------------|---------------------|---------|---------------|-----------|-----------|--|
| QC Batch | Parameter                           | Date       | % Recovery   | QC Limits | % Recovery | QC Limits           | Value   | UNITS         | Value (%) | QC Limits |  |
| 8922601  | 1,1-Dichloroethylene                | 2023/09/19 | 100          | 60 - 140  | 96         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | 1,2-Dichlorobenzene                 | 2023/09/19 | 95           | 60 - 140  | 92         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | 1,2-Dichloroethane                  | 2023/09/19 | 88           | 60 - 140  | 87         | 60 - 130            | <0.049  | ug/g          | NC (1)    | 50        |  |
| 8922601  | 1,2-Dichloropropane                 | 2023/09/19 | 94           | 60 - 140  | 93         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | 1,3-Dichlorobenzene                 | 2023/09/19 | 102          | 60 - 140  | 97         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | 1,4-Dichlorobenzene                 | 2023/09/19 | 111          | 60 - 140  | 106        | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Acetone (2-Propanone)               | 2023/09/19 | 86           | 60 - 140  | 84         | 60 - 140            | <0.49   | ug/g          | NC (1)    | 50        |  |
| 8922601  | Benzene                             | 2023/09/19 | 89           | 60 - 140  | 88         | 60 - 130            | <0.0060 | ug/g          | NC (1)    | 50        |  |
| 8922601  | Bromodichloromethane                | 2023/09/19 | 97           | 60 - 140  | 97         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Bromoform                           | 2023/09/19 | 81           | 60 - 140  | 81         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Bromomethane                        | 2023/09/19 | 97           | 60 - 140  | 91         | 60 - 140            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Carbon Tetrachloride                | 2023/09/19 | 98           | 60 - 140  | 97         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Chlorobenzene                       | 2023/09/19 | 97           | 60 - 140  | 96         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Chloroform                          | 2023/09/19 | 99           | 60 - 140  | 98         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | cis-1,2-Dichloroethylene            | 2023/09/19 | 97           | 60 - 140  | 95         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | cis-1,3-Dichloropropene             | 2023/09/19 | 85           | 60 - 140  | 86         | 60 - 130            | <0.030  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Dibromochloromethane                | 2023/09/19 | 89           | 60 - 140  | 88         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Dichlorodifluoromethane (FREON 12)  | 2023/09/19 | 105          | 60 - 140  | 81         | 60 - 140            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Ethylbenzene                        | 2023/09/19 | 91           | 60 - 140  | 90         | 60 - 130            | <0.010  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Ethylene Dibromide                  | 2023/09/19 | 89           | 60 - 140  | 88         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | F1 (C6-C10) - BTEX                  | 2023/09/19 |              |           |            |                     | <10     | ug/g          | NC (1)    | 30        |  |
| 8922601  | F1 (C6-C10)                         | 2023/09/19 | 94           | 60 - 140  | 91         | 80 - 120            | <10     | ug/g          | NC (1)    | 30        |  |
| 8922601  | Hexane                              | 2023/09/19 | 97           | 60 - 140  | 94         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Methyl Ethyl Ketone (2-Butanone)    | 2023/09/19 | 86           | 60 - 140  | 85         | 60 - 140            | <0.40   | ug/g          | NC (1)    | 50        |  |
| 8922601  | Methyl Isobutyl Ketone              | 2023/09/19 | 84           | 60 - 140  | 85         | 60 - 130            | <0.40   | ug/g          | NC (1)    | 50        |  |
| 8922601  | Methyl t-butyl ether (MTBE)         | 2023/09/19 | 93           | 60 - 140  | 92         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Methylene Chloride(Dichloromethane) | 2023/09/19 | 95           | 60 - 140  | 92         | 60 - 130            | <0.049  | ug/g          | NC (1)    | 50        |  |
| 8922601  | o-Xylene                            | 2023/09/19 | 84           | 60 - 140  | 83         | 60 - 130            | <0.020  | ug/g          | NC (1)    | 50        |  |
| 8922601  | p+m-Xylene                          | 2023/09/19 | 96           | 60 - 140  | 94         | 60 - 130            | <0.020  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Styrene                             | 2023/09/19 | 80           | 60 - 140  | 79         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |
| 8922601  | Tetrachloroethylene                 | 2023/09/19 | 97           | 60 - 140  | 95         | 60 - 130            | <0.040  | ug/g          | NC (1)    | 50        |  |

Page 12 of 20



Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

|          |                                   |            | Matrix     | Matrix Spike |            | SPIKED BLANK |        | Method Blank |           | RPD       |  |
|----------|-----------------------------------|------------|------------|--------------|------------|--------------|--------|--------------|-----------|-----------|--|
| QC Batch | Parameter                         | Date       | % Recovery | QC Limits    | % Recovery | QC Limits    | Value  | UNITS        | Value (%) | QC Limits |  |
| 8922601  | Toluene                           | 2023/09/19 | 92         | 60 - 140     | 90         | 60 - 130     | <0.020 | ug/g         | NC (1)    | 50        |  |
| 8922601  | Total Xylenes                     | 2023/09/19 |            |              |            |              | <0.020 | ug/g         | NC (1)    | 50        |  |
| 8922601  | trans-1,2-Dichloroethylene        | 2023/09/19 | 96         | 60 - 140     | 93         | 60 - 130     | <0.040 | ug/g         | NC (1)    | 50        |  |
| 8922601  | trans-1,3-Dichloropropene         | 2023/09/19 | 89         | 60 - 140     | 89         | 60 - 130     | <0.040 | ug/g         | NC (1)    | 50        |  |
| 8922601  | Trichloroethylene                 | 2023/09/19 | 96         | 60 - 140     | 96         | 60 - 130     | <0.010 | ug/g         | NC (1)    | 50        |  |
| 8922601  | Trichlorofluoromethane (FREON 11) | 2023/09/19 | 104        | 60 - 140     | 99         | 60 - 130     | <0.040 | ug/g         | NC (1)    | 50        |  |
| 8922601  | Vinyl Chloride                    | 2023/09/19 | 102        | 60 - 140     | 92         | 60 - 130     | <0.019 | ug/g         | NC (1)    | 50        |  |
| 8922837  | F2 (C10-C16 Hydrocarbons)         | 2023/09/19 | 101        | 60 - 130     | 99         | 80 - 120     | <10    | ug/g         | NC (1)    | 30        |  |
| 8922837  | F3 (C16-C34 Hydrocarbons)         | 2023/09/19 | 102        | 60 - 130     | 101        | 80 - 120     | <50    | ug/g         | NC (1)    | 30        |  |
| 8922837  | F4 (C34-C50 Hydrocarbons)         | 2023/09/19 | 102        | 60 - 130     | 100        | 80 - 120     | <50    | ug/g         | NC (1)    | 30        |  |
| 8923317  | Moisture                          | 2023/09/18 |            |              |            |              |        |              | 0.55 (1)  | 20        |  |
| 8925366  | Acid Extractable Antimony (Sb)    | 2023/09/19 | 102 (2)    | 75 - 125     | 101        | 80 - 120     | <0.20  | ug/g         | 19 (3)    | 30        |  |
| 8925366  | Acid Extractable Arsenic (As)     | 2023/09/19 | 99 (2)     | 75 - 125     | 100        | 80 - 120     | <1.0   | ug/g         | 0.64 (3)  | 30        |  |
| 8925366  | Acid Extractable Barium (Ba)      | 2023/09/19 | NC (2)     | 75 - 125     | 97         | 80 - 120     | <0.50  | ug/g         | 1.9 (3)   | 30        |  |
| 8925366  | Acid Extractable Beryllium (Be)   | 2023/09/19 | 102 (2)    | 75 - 125     | 99         | 80 - 120     | <0.20  | ug/g         | 0.075 (3) | 30        |  |
| 8925366  | Acid Extractable Boron (B)        | 2023/09/19 | 91 (2)     | 75 - 125     | 99         | 80 - 120     | <5.0   | ug/g         | 5.4 (3)   | 30        |  |
| 8925366  | Acid Extractable Cadmium (Cd)     | 2023/09/19 | 97 (2)     | 75 - 125     | 95         | 80 - 120     | <0.10  | ug/g         | 0.51 (3)  | 30        |  |
| 8925366  | Acid Extractable Chromium (Cr)    | 2023/09/19 | 99 (2)     | 75 - 125     | 101        | 80 - 120     | <1.0   | ug/g         | 4.8 (3)   | 30        |  |
| 8925366  | Acid Extractable Cobalt (Co)      | 2023/09/19 | 99 (2)     | 75 - 125     | 102        | 80 - 120     | <0.10  | ug/g         | 1.7 (3)   | 30        |  |
| 8925366  | Acid Extractable Copper (Cu)      | 2023/09/19 | NC (2)     | 75 - 125     | 101        | 80 - 120     | <0.50  | ug/g         | 2.1 (3)   | 30        |  |
| 8925366  | Acid Extractable Lead (Pb)        | 2023/09/19 | NC (2)     | 75 - 125     | 100        | 80 - 120     | <1.0   | ug/g         | 1.7 (3)   | 30        |  |
| 8925366  | Acid Extractable Molybdenum (Mo)  | 2023/09/19 | 98 (2)     | 75 - 125     | 100        | 80 - 120     | <0.50  | ug/g         | 5.4 (3)   | 30        |  |
| 8925366  | Acid Extractable Nickel (Ni)      | 2023/09/19 | 98 (2)     | 75 - 125     | 101        | 80 - 120     | <0.50  | ug/g         | 2.3 (3)   | 30        |  |
| 8925366  | Acid Extractable Selenium (Se)    | 2023/09/19 | 101 (2)    | 75 - 125     | 101        | 80 - 120     | <0.50  | ug/g         | NC (3)    | 30        |  |
| 8925366  | Acid Extractable Silver (Ag)      | 2023/09/19 | 100 (2)    | 75 - 125     | 100        | 80 - 120     | <0.20  | ug/g         | NC (3)    | 30        |  |
| 8925366  | Acid Extractable Thallium (TI)    | 2023/09/19 | 100 (2)    | 75 - 125     | 100        | 80 - 120     | <0.050 | ug/g         | 8.6 (3)   | 30        |  |
| 8925366  | Acid Extractable Uranium (U)      | 2023/09/19 | 100 (2)    | 75 - 125     | 100        | 80 - 120     | <0.050 | ug/g         | 4.3 (3)   | 30        |  |
| 8925366  | Acid Extractable Vanadium (V)     | 2023/09/19 | 99 (2)     | 75 - 125     | 100        | 80 - 120     | <5.0   | ug/g         | 0.17 (3)  | 30        |  |



Keystone Environmental Client Project #: 18494 Site Location: 66 FORDHOUSE BLVD Sampler Initials: AK

| _        |                            |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B | lank  | RPD       |           |  |  |
|----------|----------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|--|--|
| QC Batch | Parameter                  | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |  |  |
| 8925366  | Acid Extractable Zinc (Zn) | 2023/09/19 | NC (2)     | 75 - 125  | 99         | 80 - 120  | <5.0     | ug/g  | 1.6 (3)   | 30        |  |  |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) Matrix Spike Parent ID [WZU359-02]

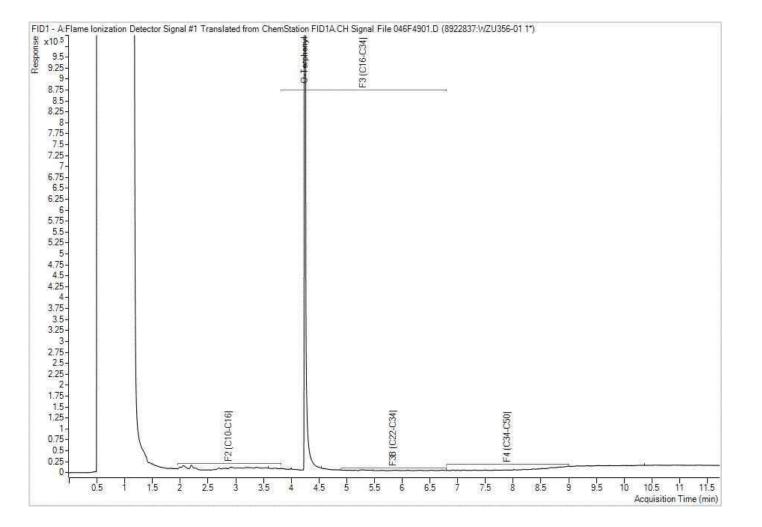
(3) Duplicate Parent ID [WZU359-02]

Page 14 of 20



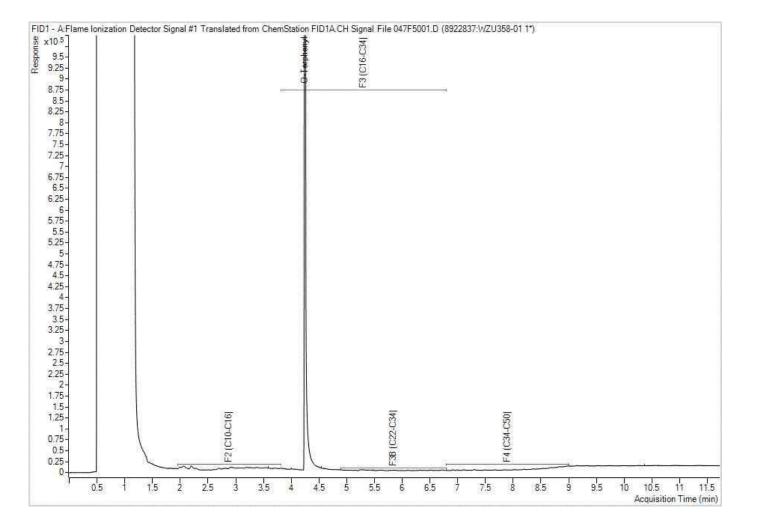
### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:


Anastassia Hamanov, Scientific Specialist

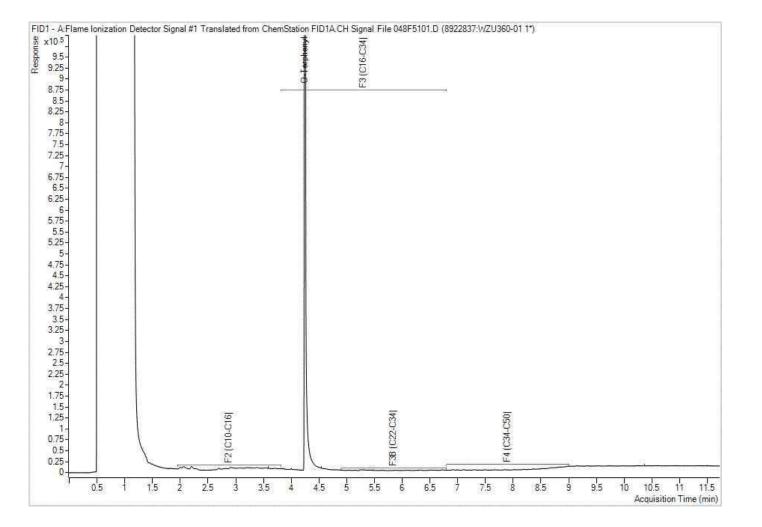
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

| (3) 6740 Camp                                                           | bello Road, Mississauga, Ontario 15N 218        |           |           |         |                                          |                  |                |                 |                         |         |                   | CHAIN OF CUSTODY RECORD |                    |                                        |                          |                                       |       |        |        |         |      |       |      |      |                         |      |       |                  |                    |                 |                |                        |
|-------------------------------------------------------------------------|-------------------------------------------------|-----------|-----------|---------|------------------------------------------|------------------|----------------|-----------------|-------------------------|---------|-------------------|-------------------------|--------------------|----------------------------------------|--------------------------|---------------------------------------|-------|--------|--------|---------|------|-------|------|------|-------------------------|------|-------|------------------|--------------------|-----------------|----------------|------------------------|
|                                                                         | 817-5700                                        |           |           |         |                                          | e: 800-563-626   | 6              |                 |                         |         |                   |                         |                    |                                        |                          | EN                                    | IV CO | DC - 1 | 0001   | 4v3     |      |       |      |      |                         |      |       |                  | Page               | -               | 1              | of _                   |
| oice Information Invoice to (requires report)                           |                                                 |           | Report li | nformat | tion (if d                               | differs from inv | oice)          |                 |                         |         |                   |                         |                    |                                        | ł                        | roject Info                           | omati | on     |        |         |      |       | Т    |      | -                       | -    |       |                  |                    |                 | _              |                        |
| npany: Keystone Envinonmental                                           | Company:                                        |           |           |         |                                          |                  |                |                 |                         | 0       | Quota             | ation                   | #:                 |                                        |                          |                                       |       |        |        |         |      |       |      |      |                         |      | 16    | Sat              | -23                | 13:             | 14             |                        |
| ne: Jeik Nivir                                                          | Contact<br>Name:                                |           |           |         |                                          |                  |                |                 |                         | F       | P.O. #            | AFE                     | #:                 |                                        |                          |                                       |       |        |        |         |      |       | 1    |      |                         |      | 10-   | -96]             | 5-25               | 15.             |                |                        |
| 6732 Nuturouse Pol                                                      | Street<br>Address:                              |           |           |         |                                          |                  |                |                 |                         | 1       | Projec            | ct #:                   |                    | 18                                     | 4                        | 94                                    |       |        |        |         |      |       | 1    | K    | ud                      | ra   | t F   | Bajv             | va                 |                 |                |                        |
| MISSISCOMAR Prov: ON Code: 45N 615                                      | City:                                           |           |           |         | Prov:                                    |                  | Post           |                 |                         | 5       | Site #:           | :                       |                    | 66                                     | For                      | 94<br>dhow                            | ×     | RI     | vd     |         |      |       | 1    | 111  |                         |      |       | 1                | 00                 | 1111 HI         | •              |                        |
| one: 647-234 - 7241                                                     | Phone:                                          |           |           |         |                                          |                  |                |                 |                         |         | Site Lo           | 111111                  |                    |                                        | +                        |                                       |       | -      |        |         |      |       | 1    |      | 2                       | C.   | 35    | 50               | 69                 |                 |                |                        |
|                                                                         | Emgil:                                          |           |           |         |                                          |                  |                |                 |                         |         | Site Lo<br>Provir |                         | on                 | on                                     | Í                        |                                       |       |        |        |         |      |       | T.   |      | <b>1</b> 2              |      |       | EN               | W-1                | 394             | 6              |                        |
| all: Imuse iceystoneunvironment                                         | sonicaphol.                                     | (0)       |           |         | _                                        |                  |                | 1 - 1           |                         |         |                   | led By                  |                    | A                                      | K                        |                                       |       |        |        |         |      |       |      | JD   |                         |      |       |                  |                    |                 |                |                        |
| Regulatory Crit                                                         | ria<br>CCME<br>Reg 558*<br>*min 3 day 1<br>MISA | TAT       | Sanit     | m Sewe  | ole:<br>ver Byla<br>or Bylaw<br>cipality | , C              |                | 2               | 3                       | 4       | 5                 | 6                       | 1                  | 8                                      | (8)                      | 0 11                                  | 11    | 13     | 14 1   | 5 1     | 6 1  | / 18  | 19   | 20   | 21                      | 2    |       | 1 <b>7</b> 8 5 0 | o 7 Day<br>Rush Tu | urnarou         | 1 nd Time      | o Day<br>(TAT)         |
| Include Criteria on Certificate of                                      | PWQ0                                            | ck if ves | Othe      | HI:     |                                          |                  | -              |                 | 0                       |         |                   |                         | anics              |                                        | HWS-1                    |                                       |       |        |        |         |      |       |      |      | TED                     |      | F     | 17.              | me Day             | urcharge        | and the second |                        |
| SAMPLES MUST BE KEPT COOL (<10'C) FROM TIME OF SAMP                     | a start                                         | 155       | 1         | DEALLA  | COLTAR                                   |                  |                |                 | LAB FILTRATION REQUIRED |         |                   |                         | inorganics         | ste                                    | etals.                   |                                       |       |        |        |         |      |       |      |      | OF CONTAINERS SUBMITTED | 1076 | ALYZE |                  |                    |                 |                |                        |
| SAMPLES MUST BE REPT CODE (STUC) FROM TIME OF SAMP                      | and ordine to                                   | ETVER     |           | I I     | enno                                     |                  |                | Q2              | ON RE                   |         |                   |                         | Reg 153 metals and | Reg 153 ICPMS metals<br>Reg 153 metals | He, Cr VI, ICPMS metals. |                                       |       |        |        |         |      |       |      |      | ERS S                   |      | 2     |                  | - YEI 5-           |                 | 3              | Day                    |
|                                                                         | Dat                                             | te Samp   | led       | Time    | (24hr)                                   | 100000           | LTERE          | RESER           | RATIC                   |         |                   |                         | meta               | ICPM                                   | A, ICP                   | I                                     |       |        |        |         |      |       |      |      | NTAIN                   |      | NO    | ate              | iay                | YY              |                | MM                     |
| Sample Identification                                                   | YY                                              | MM        | DD        | нн      | мм                                       | Matrix           | FIELD FILTERED | FIELD PRESERVED | B FILT                  | BTEX/F1 | F2 - F4           | VOCS                    | g 153              | Reg 153 iCPMS                          | E.C.                     | HHA                                   |       |        |        |         |      |       |      |      | OF CO                   | 6    | - OID | lequired         | d:                 |                 |                |                        |
|                                                                         | 1                                               |           | 1.0       | 10      |                                          | 0.1              | E              | æ               | 3                       | 8       | 8                 | 3                       | Re                 |                                        | -                        |                                       | +     | +      | +      | +       | +    | +     | ╈    | +    | -                       | -    | Ŧ     |                  |                    | Comm            | ients          | -                      |
| BH1-552<br>BH7-554<br>BH8-552                                           | 2023                                            | 09        | 15        | 10      | 00                                       | Soil             | -              |                 | $\vdash$                |         |                   |                         | _                  | X                                      | -1                       | ٢                                     | -     | +      | -      | -       | +    | +     | +    | -    | +                       | +    | +     | _                |                    |                 | _              |                        |
| 13H7-554                                                                | 11                                              | 1         | 1         | 10      | 15                                       | 1                |                |                 |                         | Х       | Х                 | X                       | _                  |                                        | -                        |                                       | _     |        | _      | _       | _    |       | _    |      |                         |      | 4     |                  |                    |                 |                |                        |
| BH8-552                                                                 |                                                 |           |           | JD      | 45                                       |                  |                |                 |                         |         |                   |                         |                    | X                                      | >                        | (                                     |       |        |        |         |      |       |      |      |                         |      |       |                  |                    |                 |                |                        |
| 1348-554                                                                |                                                 |           |           | 11      | 00                                       |                  |                |                 |                         | X       | X                 | X                       |                    |                                        |                          |                                       |       |        |        |         |      |       |      |      |                         |      |       |                  |                    |                 |                |                        |
| BH6 - SS 1                                                              |                                                 | Π         | 11        | н       | 30                                       |                  |                |                 |                         |         |                   |                         |                    | x                                      | ,                        | ĸ                                     |       |        | T      |         |      | T     | Γ    | T    |                         | T    | T     |                  |                    |                 |                |                        |
| BH6 - 554                                                               |                                                 | H         | H         | 11      | 45                                       |                  | 1              |                 |                         | x       | ~                 | X                       |                    | -                                      | 1                        |                                       | +     | +      | +      | +       | +    | +     | t    | t    | t                       | +    | +     |                  | _                  |                 |                |                        |
| 5110 - 354                                                              | -11-                                            | ++-       | ++        | -       | 30                                       |                  | +              |                 |                         | ~       | ~                 | ~                       | -                  | ~                                      |                          | ,                                     | +     | +      | +      | +       | +    | +     | +    | +    | +                       | +    | +     |                  | _                  |                 |                |                        |
| 151116 - 551                                                            | 1                                               | 1         | 1         | -       |                                          |                  | +              | -               | $\vdash$                |         |                   |                         | -                  | ×                                      | -1'                      | (                                     | +     | +      | +      | +       | +    | +     | +    | +    | +                       | +    | +     | _                |                    |                 |                |                        |
| 13412-553                                                               | -                                               | 4         | 4         | 12      | 30                                       |                  |                | -               |                         | X       | X                 | X                       |                    |                                        | +                        | $\rightarrow$                         | +     | _      | _      | +       | +    | +     | +    | +    | -                       | +    | 4     |                  |                    |                 |                |                        |
|                                                                         |                                                 |           |           |         |                                          |                  |                | -               |                         |         |                   |                         |                    |                                        |                          |                                       |       |        |        |         |      |       |      |      |                         |      |       |                  |                    |                 |                |                        |
| D                                                                       |                                                 |           |           |         |                                          |                  | -              |                 |                         |         |                   |                         |                    |                                        |                          |                                       | _     |        |        |         |      |       |      |      |                         |      |       |                  |                    |                 |                |                        |
| 1                                                                       |                                                 |           | -         |         |                                          |                  | -              | 1               |                         |         |                   |                         |                    |                                        |                          |                                       |       |        |        |         |      |       |      |      |                         |      |       |                  |                    |                 |                |                        |
| 2                                                                       |                                                 | 1         |           | 1       |                                          |                  |                |                 |                         |         |                   |                         |                    |                                        | +                        |                                       | 1     | +      | 1      | +       | 1    | -     | t    | t    | 1                       | 1    | +     |                  |                    |                 |                |                        |
| UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON TH             | IS CHAIN OF                                     | CUSTO     | DY IS SUI | BIECT T | D BUREA                                  | AU VERITAS ST    | NDAR           | D TERM          | MS AN                   | D CON   | NDITIC            | ONS_                    | SIGNU              | NG OF T                                | HIS CI                   | AIN OF C                              | USTOD | Y DOD  | UMEN   | IT IS A | CKND | WLEDO | SMEN | TAND | ACC                     | EPTA | ANCE  | OFOU             | RTERM              | AND CO          | DNDITIO        | NS WHICH               |
|                                                                         | AVA                                             | LABLE     | FOR VIE   | WING A  | TWWW                                     | BVNA.COM/T       | ERMS           | AND-CI          | ONDIT                   | ION5    | OR BY             | CALL                    | LING T             | HE LAB                                 | ORATI                    | DRY LISTED                            | ABOY  | VE TO  | OBTAI  | NAC     | PPY  |       |      |      |                         |      |       |                  |                    |                 |                |                        |
| al present Yes No<br>al present Y res No<br>rc 2(2)<br>2<br>2<br>2<br>2 | 0 23                                            | Seal in   | resent    | SE ONLY |                                          | Yes              | No             |                 | rc                      | 1       |                   | 2                       |                    | 3                                      | s                        | eal presen<br>eal intact<br>ooling me |       |        |        |         |      | Yes   |      | No   |                         | ۰c   | 1     | 1                | 2                  | 3<br>ial instru |                | Temperati<br>reading b |
| Relinquished by: (Signature/Print) vv<br>Alghay Qe 2623                 | 09 19                                           |           | нн<br>)   | 8       | D                                        |                  |                |                 | I by: (S                |         |                   |                         |                    | our                                    | h.r                      | 23                                    |       | 1      | )<br>9 |         | 15   | _     | 13   |      | Y                       |      |       |                  | speci              | ai mstru        | Lions          |                        |


Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH7-SS4

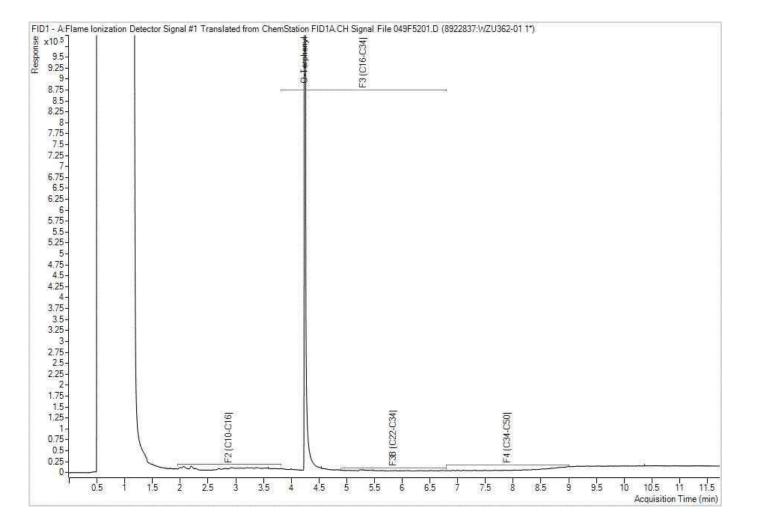
### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH8-SS4

### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH6-SS4

### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Keystone Environmental Client Project #: 18494 Project name: 66 FORDHOUSE BLVD Client ID: BH12-SS3

### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

